Special Topic of Energy-efficient Dedicated Chips for Intelligent Robots
LIU Bingqiang, SHEN Zixuan, WANG Jipeng, XIAO Jian, TAN Yulong, HE Zaisheng, XU Dengke, WANG Ke, QU Weixin, WANG Chao, SUN Lining
Robots represent a revolutionary engine of new productive forces, reshaping human life and work. Simultaneous Localization And Mapping (SLAM) technology enables robots to navigate autonomously in unknown environments and construct maps of their surroundings, serving as the cornerstone for the intelligence of autonomous mobile robots. However, given that SLAM algorithms are complex and computationally intensive, implementations based on general-purpose CPU chips suffer from long delays and high power consumption, which fails to meet the real-time and power consumption requirements of autonomous mobile robots, especially small, micro, and nano ones. Consequently, the design of specialized hardware accelerator chips to accelerate computation-intensive SLAM algorithms has received considerable attention from both the academic and industrial communities in recent years. This article starts with the basic concepts and application scenarios of SLAM technology, and highlights the necessity of hardware acceleration for SLAM algorithms. It then reviews the current research status and development trends from the perspectives of algorithms and dedicated chip design, and discusses the technical challenges and solutions related to SLAM dedicated chips, providing recommendions for future development.