低压超大功率PCB电源完整性分析

陈光, 王刚, 贾春波

集成电路与嵌入式系统 ›› 2025, Vol. 25 ›› Issue (3) : 1-8.

PDF(14828 KB)
PDF(14828 KB)
集成电路与嵌入式系统 ›› 2025, Vol. 25 ›› Issue (3) : 1-8. DOI: 10.20193/j.ices2097-4191.2024.0084
封面文章

低压超大功率PCB电源完整性分析

作者信息 +

Analysis of power integrity for low-voltage high-power PCB

Author information +
文章历史 +

摘要

针对48 V输入电压、0.8 V输出电压及1 000 A电流需求的国产电源验证板的布局布线设计,开展电源完整性分析。提出了一种基于电源分配网络(PDN)的仿真设计策略,即在最初阶段,通过对比不同PCB布局的电压降仿真结果选择良好布局,再通过电源平面及过孔载流的仿真分析对过流过孔进行优化设计。优化措施使电压跌落降低了14.5 mV,平面电路密度减小了61%,电源系统损耗降低了17.2 W,并减缓过孔电流至1/2。此外,模拟了使用散热器的热效应,结果显示散热器应用后最高温度下降了27.81 ℃。最后,使用电源平面谐振仿真分析,成功将电源平面谐振噪声控制在输出电压的0.001%以内。实测结果表明,验证板纹波噪声控制在额定输出电压的1%以内,整体效率超过90%,达到行业领先水平。本文所提出的仿真流程策略能有效提高PCB设计效率,避免了过大的降压损失、过流及过温等电源完整性风险。

Abstract

A power integrity analysis is conducted for the layout and routing design of a domestic power verification board targeting a 48 V power input, with an output voltage of 0.8 V and a current requirement of 1 000 A. A simulation design strategy based on the power distribution network (PDN) is proposed. In the initial stage, an optimal layout is selected by comparing the voltage drop simulation results with different PCB layouts. Then, through simulation analysis of the power plane and via current carrying capacity, the vias are optimized. The optimization measures significantly reduced the voltage drop by 14.5 mV, decreased the plane circuit density by 61%, lowered power system loss by 17.2 W, and halved the via current. Moreover, the thermal effect of using a heat sink is simulated, and the results show that the highest temperature dropped by 27.81 ℃ after the application of the heat sink. Finally, using power plane resonance simulation analysis, the power plane resonance noise is successfully controlled within 0.001% of the output voltage. After board fabrication and actual measurement, the ripple noise of the verification board was controlled within 1% of the rated output voltage, and the overall efficiency exceeded 90%, reaching an industry-leading level. The results indicate that the simulation process strategy proposed in this paper can effectively improve the efficiency of PCB design, and avoid power integrity risks, such as excessive voltage drop loss, overcurrent, and overheating.

关键词

PCB / 电源完整性 / 电压降 / 电热耦合仿真 / 过孔通流能力 / 谐振仿真

Key words

PCB / power integrity / IR drop / electro-thermal coupling simulation / through-hole flow capacity / resonance simulation

引用本文

导出引用
陈光, 王刚, 贾春波. 低压超大功率PCB电源完整性分析[J]. 集成电路与嵌入式系统. 2025, 25(3): 1-8 https://doi.org/10.20193/j.ices2097-4191.2024.0084
CHEN Guang, WANG Gang, JIA Chunbo. Analysis of power integrity for low-voltage high-power PCB[J]. Integrated Circuits and Embedded Systems. 2025, 25(3): 1-8 https://doi.org/10.20193/j.ices2097-4191.2024.0084
中图分类号: TP931   

参考文献

[1]
SRIDHARAN V, SWAMINATHAN M, BANDYOPADHYAY T. Enhancing signal and power integrity using double sided silicon interposer[J]. IEEE Microwave and Wireless Components Letters, 2011, 21(11):598-600.
[2]
张木水. 高速电路电源分配网络设计与电源完整性分析[D]. 西安: 西安电子科技大学, 2009.
ZHANG M S. Power Delivery Network Design and Power Integrity Analysis for High-Speed Circuits[D]. Xi`an: Xidian University, 2009 (in Chinese).
[3]
SWAMINATHAN M, KIM J, NOVAK I, et al. Power distribution networks for system on package:status and challenges[J]. IEEE Transactions on Advanced Packaging, 2004, 27(2):286-300.
[4]
王保坡, 杜劲松, 田星, 等. 基于混合遗传算法的去耦电容网络设计[J]. 电子技术应用, 2015, 41(7):146-149,153.
WANG B P, DU J S, TIAN X, et al. Design of Decoupling Capacitor Networks Based on Hybrid Genetic Algorithm[J]. Application of Electronic Technique, 2015, 41(7):146-149,153(in Chinese).
[5]
马秀荣, 白红蕊, 白媛, 等. 一种抑制电源分配网络并联谐振的方法[J]. 电子技术应用, 2012, 38(8):59-62.
MA X R, BAI H R, BAI Y, et al. A Method for Suppressing Parallel Resonance in Power Distribution Networks[J]. Electronic Technology Applications, 2012, 38(8):59-62 (in Chinese).
[6]
WANG H, LISERRE M, BLAABJERG F, et al. Transitioning to physics-offailure as a reliability driver in power electronics[J]. IEEE Journal ofEmerging and Selected Topics in Power Electronics, 2013, 2(1):97-114.
[7]
NING Y, AZARIAN M H, PECHT M. Effects of voiding on thermomechanical reliability of copper-filled microvias:modeling and simulation[J]. IEEE Transactions on Device and Materials Reliability, 2015, 15(4):500-510.
[8]
WILD P, GRÖZINGER T, LORENZ D, et al. Void formation and their effect on reliability of lead - free solder joints on MID and PCB substrates[J]. IEEE Transactions on Reliability, 2017, 66(4):1229-1237.
[9]
BAHUN I, SUNDE V, JAKOPOVIC Z. Estimation of insulated-gate bipolar transistor operating temperature:Simulation and experiment[J]. Journal of Power Electronics, 2013, 13(4):729-736.
[10]
CHENG Y, FU G, JIANG M, et al. Investigation on intermittent life testing program for IGBT[J]. Journal of Power Electronics, 2017, 17(3):811-820.
[11]
LI G, ZHANG J, GAO J. Study on structure optimization of a dual IGBT module heat sink in a DC-DC converter under natural convection based on field synergy theory[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2019, 14(10):1524-1531.
[12]
吴愉华, 陈立恒, 李世俊. 基于遗传算法的空间电子设备板级热设计[J]. 计算机仿真, 2019, 36(11):228-233.
WU Y H, CHEN L H, LI S J. Board-Level Thermal Design of Space Electronic Equipment Based on Genetic Algorithm[J]. Computer Simulation, 2019, 36(11):228-233 (in Chinese).
[13]
GÓRECKI K, POSOBKIEWICZ K. Influence of a PCB layout design on the efficiency of heat dissipation and mutual thermal couplings between transistors[J]. Electronics, 2023, 12(19):4116.
[14]
李广义, 张俊洪, 高键鑫. 大功率电力电子器件散热研究综述[J]. 兵器装备工程学报, 2020, 41(11):8-14.
LI G Y, ZHANG J H, GAO J X. A Review of Heat Dissipation Research for High-Power Power Electronic Devices[J]. Journal of Ordnance Equipment Engineering, 2020, 41(11):8-14 (in Chinese).
[15]
李跟宝, 王扬, 汪熙, 等. 多芯片 PCB 板热布局优化试验研究及数值模拟[J]. 电子器件, 2017, 40(4):800-805.
LI G B, WANG Y, WANG X, et al. Experiment Study and Numerical Simulation on Thermal Layout Optimization of a Multi-Chip Printed Wiring Board(PCB)[J]. Chinese Journal of Electron Devices, 2017, 40(4):800-805 (in Chinese).
[16]
OHAYON-LAVI A, SHACHAR-MICHAELY G, KORONIOE, et al. Graphenebased conformal coating for heat dissipation on printed circuit boards[J]. Applied Thermal Engineering, 2023,229:120562.
[17]
罗立晟, 刘益才, 廖子淼, 等. PCB电路板及其电子元器件系统级散热技术进展[J]. 低温与超导, 2023, 51(2):48-54.
LUO L S, LIU Y C, LIAO Z M, et al. Development of system level heat dissipation technology for PCB and its electronic components)[J]. Cryo.&Supercond, 2023, 51(2):48-54 (in Chinese).
[18]
FANG Y J, SU B H, HANG L X. Studies on Ripple Suppression in the Switching Power Supply[J]. Modern electronic technology, 2012, 35(10):136-138.
[19]
CAMPONOGARA D, FERREIRA G F, CAMPOS A, et al. Off-line LED driver for street lighting with an optimized cascade structure[C]// 2012 IEEE Industry Applications Society Annual Meeting.IEEE, 2012.DOI:10.1109/IAS.2012.6374059.

基金

并行与分布处理重点实验室基金(WDZC20235250113)

编辑: 薛士然
PDF(14828 KB)

Accesses

Citation

Detail

段落导航
相关文章

/