为了解决传统路径追踪系统追踪精度低的问题,本文设计了基于嵌入式图像识别的机器人路径追踪系统。系统利用内核驱动层的图像采集模块驱动硬件层的CCD摄像机,采集行驶路径的图像信息并传送至同层的控制模块;控制模块选用TMS320DM6437将图像信息传送至业务支持层的图像识别模块;图像识别模块通过边缘提取等过程识别路径信息,将识别结果传送至路径追踪模块,并在通信模块中利用无线通信网络在追踪界面展示路径追踪结果。实验结果表明:在不同光照强度下,该系统得到的机器人路径追踪结果的位移偏差小于2 cm、角度偏差小于1°,说明该系统具有优越的路径追踪性能。
Abstract
In order to solve the poor tracking accuracy of traditional path tracking system,a robot path tracking system based on embedded image recognition is designed in this paper.The system uses the image acquisition module of the kernel driver layer to drive the CCD camera of the hardware layer to collect the image information of the driving path and transmit it to the control module of the same layer.The control module uses TMS320DM6437 embedded control chip to transmit the image information to the image recognition module of the business support layer.The image recognition module identifies the path information through the process of edge extraction and transmits the recognition result to the path tracking module,and displays the path tracking result in the interface of the wireless communication network in the communication module.The experiment results show that the displacement deviation of the robot path tracking results obtained by the system is less than 2 cm and the angle deviation is less than 1° under different light intensity,indicating that the system has excellent path tracking performance.
关键词
TMS320DM6437 /
图像识别 /
路径追踪系统 /
CCD摄像机
{{custom_keyword}} /
Key words
TMS320DM6437 /
image recognition /
path tracking system /
CCD camera
{{custom_keyword}} /
中图分类号:
TP399
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 白克,王龙.基于嵌入式智能控制系统的采摘机器人定位导航方法[J].农机化研究,2021,43(1):86-90.
[2] 李彩虹,方春,王志强,等.基于超混沌同步控制的移动机器人全覆盖路径规划[J].山东大学学报(工学版),2019,49(6):63-72.
[3] 郑富瑜,何苗,张辉,等.基于ROS的ICP-SLAM在嵌入式移动机器人上的实现与优化[J].计算机应用研究,2019,36(5):1437-1440.
[4] 何芸.基于嵌入式ARM的采摘机器人远程视频监控系统研究[J].农机化研究,2019,41(11):138-142.
[5] 丁坤,王立,张经炜,等.基于改进导航圆算法的光伏阵列清扫机器人路径跟踪控制[J].河海大学学报(自然科学版), 2021,49(2):190-196.
[6] 白国星,刘丽,孟宇,等.基于非线性模型预测控制的移动机器人实时路径跟踪[J].农业机械学报,2020,51(9):47-52,60.
[7] 黄玉钏.基于概率神经网络图像识别的移动机器人控制研究[J].小型微型计算机系统,2019,40(4):908-912.
[8] 杨小琴,朱玉全.基于物联网的机器人运行路径感知规划仿真[J].计算机仿真,2020,37(8):286-290.
[9] 李艳,周莹亮,李可可.基于STM32的移动机器人目标自动跟随系统设计[J].电子器件,2019,42(2):403-410.
[10] 张丹凤.基于路径边沿引导策略的蛇形机器人路径跟踪方法[J].机器人,2021,43(1):36-43.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}