PDF(20006 KB)
一款0.16 mm2基于180 nm CMOS采用全局去偏斜的半速率8×2.5 Gb/s时钟转发架构接收机
杨力宏, 李世新, 韩晨曦, 云越恒, 刘术彬, 赵潇腾, 朱樟明
集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (4) : 1-9.
PDF(20006 KB)
PDF(20006 KB)
一款0.16 mm2基于180 nm CMOS采用全局去偏斜的半速率8×2.5 Gb/s时钟转发架构接收机
A 0.16 mm2 8×2.5 Gb/s clock-forwarding half-rate receiver with global de-skew in 180 nm CMOS
在时钟转发架构的高速有线通信接收机中,需要去偏斜电路实现时钟与数据之间的最佳采样关系,并保证多路数据的同步。本文提出了一种全局去偏斜方案,仅采用一路数据与时钟进行对齐,并通过时钟延时匹配与分布技术实现多路数据同步,减小了各通道独立去偏斜方案带来的功耗与面积开销。所提出的接收机由8路数据通道、1路半速率转发时钟通道与基于延迟锁定环路的全局去偏斜电路构成。基于180 nm CMOS工艺,在2.5 Gb/s数据率下,可去除输入时钟与数据任意偏斜,得到位于数据中心的采样相位,同时具有时钟占空比校准能力。在1.8 V电源电压下,所提出的接收机总功耗为187 mW,总面积为0.16 mm2,对比各通道独立去偏斜方案,功耗和面积开销分别节约了45.2%与62.8%。
In high-speed wireline communication,clock-forwarding receivers requires the de-skew circuit to achieve the optimal sampling relationship between the clock and the data,and to ensure the synchronization of multiple data channels.A global de-skew scheme is proposed in the paper,which only uses one data and clock channel for alignment,and implements multi-channel data synchronization by clock delay matching and distribution techniques,reducing the power and area overhead by the independent de-skew circuit for each channel.The proposed receiver consists of 8 data channels,1 half-rate forwarded clock channel,and a global de-skew circuit based on the delay-locked loop.Based on 180 nm CMOS technology,at a data rate of 2.5 Gb/s,it can remove any skew between the input clock and data,and obtain the sampling phase at the center of the data eye,with the ability of clock duty cycle calibration.At a supply voltage of 1.8 V,the total power consumption of the proposed receiver is 187 mW,occupying the area of 0.16 mm2,saving 45.2% and 62.8% of power and area overhead,respectively,compared with the independent de-skew scheme for each channel.
时钟转发 / 多路接收机 / 全局去偏斜 / 延迟锁定环路 / 时钟分布 / 数据同步 / 半速率
clock forwarding / multi-channel receivers / global de-skew / delay-locked loops / clock distribution / data synchronization / half rate
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
朱斌超. 基于环形振荡器的电荷泵锁相环研究与设计[D]. 南京: 东南大学, 2019:32-34.
|
| [9] |
贾谦, 张瑞, 张涛, 等. 高速数字集成电路ATE测试中的信道损耗补偿[J]. 电子世界, 2019(3):169-170.
|
| [10] |
|
| [11] |
郭俊. 高速SerDes系统的时钟恢复电路设计研究[D]. 杭州: 浙江大学, 2019:73-74.
|
| [12] |
|
| [13] |
李乾男. 一种高频时钟分频电路[J]. 中国集成电路, 2022, 31(8):49-51.
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
A P VAN DER WEL,G W DEN BESTEN. A 1.2-6 Gb/s,4.2 pJ/Bit Clock & Data Recovery Circuit With High Jitter Tolerance in 0.14 μm CMOS[J]. Journal of Solid-State Circuits, 2012, 47(7):1768-1775.
|
| [19] |
|
/
| 〈 |
|
〉 |