基于最小二乘法的三维TMR数字罗盘系统设计

张松浩, 崔敏, 张鹏

集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (4) : 30-36.

PDF(1309 KB)
PDF(1309 KB)
集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (4) : 30-36. DOI: 10.20193/j.ices2097-4191.2024.04.005
研究论文

基于最小二乘法的三维TMR数字罗盘系统设计

作者信息 +

Design of three-dimensional TMR digital compass system based on least squares method

Author information +
文章历史 +

摘要

针对市面上现有的三维数字罗盘在进行地磁场检测时极易受到外界磁场的干扰进而导致测量精度低的问题,设计了一款基于最小二乘法的三维TMR(隧道磁阻效应)数字罗盘系统。对其在现实中的误差特点开展研究,在由椭球拟合法处理校正后,运用了最小二乘法开展误差补偿,补偿前其方位角精度为4.18°,补偿后其方位角精度为0.46°,结果显而易见,在精度方面拔高了一个数量级,降低了三维数字罗盘系统的方位角误差。实验结果显示,最小二乘法可以极大地提高三维数字罗盘系统的精度,该方法具有较高的工程应用价值。

Abstract

To resolve the issue concerning the susceptibility of the prevailing three-dimensional digital compasses in the market to external magnetic field interference during the detection of Earth's magnetic field,resulting in diminished measurement precision,a three-dimensional digital compass system employing the Tunnel Magnetoresistance (TMR) effect and grounded in the least squares method has been devised.The error characteristics of a three-dimensional digital compass in practical environments is studied.After being corrected by ellipsoidal fitting,the least squares method is used for error compensation.The azimuthal precision prior to compensation stood at 4.18°,whereas post-compensation,it reached 0.46°.This reflects a tenfold enhancement in accuracy,substantially mitigating azimuthal discrepancies within the three-dimensional digital compass.The empirical findings demonstrate that the utilization of the least squares approach substantially heightens the precision of three-dimensional digital compass systems,underscoring its substantial utility in engineering applications.In addition,given the high sensitivity characteristics of TMR sensors,they are extremely suitable for use in space,indicating that the system has extremely high application value.

关键词

椭球校正 / 最小二乘法 / 隧道磁阻效应 / 三维数字罗盘 / 方位角精度

Key words

ellipsoidal correction / least square method / tunnel magnetoresistance / three-dimensional digital compass / azimuth accuracy

引用本文

导出引用
张松浩, 崔敏, 张鹏. 基于最小二乘法的三维TMR数字罗盘系统设计[J]. 集成电路与嵌入式系统. 2024, 24(4): 30-36 https://doi.org/10.20193/j.ices2097-4191.2024.04.005
ZHANG Songhao, CUI Min, ZHANG Peng. Design of three-dimensional TMR digital compass system based on least squares method[J]. Integrated Circuits and Embedded Systems. 2024, 24(4): 30-36 https://doi.org/10.20193/j.ices2097-4191.2024.04.005
中图分类号: TP212 (发送器(变换器)、传感器)   

参考文献

[1]
邱丹, 倪玲. 磁航向系统中电子罗盘的误差补偿算法研究[J]. 电子制作, 2021(21):57-60,42.
QIU D, NI L. Research on Error Compensation Algorithm of Electronic Compass in Magnetic Heading System[J]. Electronic Manufacturing, 2021(21):57-60,42. (in Chinese)
[2]
HAN L, LI G. A Novel Method of Parallel Computing Based North-Finding of the Satcom-On-The-Move System and Its Simulation[C]// Advanced Science and Industry Research Center.Proceedings of 2021 2nd International Conference on Modeling,Big Data Analytics and Simulation(MBDAS2021), 2021:246-252.
[3]
孙军亮. 基于单片机的二维电子罗盘设计[J]. 信息与电脑(理论版), 2022, 34(3):17-20.
SUN J L. Design of 2D Electronic Compass Based on Microcontroller[J]. Information and Computer (Theoretical Edition), 2022, 34(3):17-20. (in Chinese)
[4]
MOHSEN B, NAIF A, AHMAD A, et al. Sound-Based Localization Using LSTM Networks for Visually Impaired Navigation[J]. Sensors (Basel,Switzerland), 2023, 23(8).
[5]
YUEMING K, YANGCHENG X, YAO W, et al. Underground transient electromagnetic real-time imaging system for coal mine water disasters[J]. Measurement, 2022(203).
[6]
WEI W, GANG W, CHENLONG H, et al. Robust ellipse fitting based on maximum correntropy criterion with variable center[J]. IEEE Transactions on Image Processing, 2023.
[7]
白雪, 姜庆, 刘有彬, 等. 基于磁电阻传感器的电子罗盘研制[J]. 磁性材料及器件, 2022, 53(3):86-91.
BAI X, JIANG Q, LIU Y B, et al. Development of an electronic compass based on magnetoresistance sensors[J]. Magnetic Materials and Devices, 2022, 53(3):86-91. (in Chinese)
[8]
HAROLD Y. Digital Compasses for Orientation-Tilt Monitoring in Offshore Deep-Sea Infrastructures: The KM3NeT Case[J]. Engineering Proceedings, 2022, 27(1).
[9]
TOMMASO L, LUIGI T, CARLO C, et al. Soft and Hard Iron Compensation for the Compasses of an Operational Towed Hydrophone Array without Sensor Motion by aHelmholtz Coil[J]. Sensors, 2021, 21(23).
[10]
JUN F, ZHIWEN N, BAO L, et al. Research on control algorithm of strong magnetic interference compensation for MEMS electronic compass[J]. Measurement, 2023(207).
[11]
ZONGWEI L, KAN L, JIANCHENG S, et al. A Designed Calibration Approach for theMeasurement-While-Drilling Instrument[J]. Applied Sciences, 2022, 13(1).
[12]
JUN F, ZHIWEN N, YANG C. Active Compensation Method for Strong Magnetic Interference of MEMS Electronic Compass[J]. IEEE ACCESS, 2021(9).
[13]
CHEN L, SHANHONG L, PINGGUO C, et al. Research on UWB indoor 3D positioning algorithm based on the least squares method[J]. Journal of Physics:Conference Series, 2023, 2492(1).
[14]
龙振弘, 周凯. 基于磁阻传感器的电子罗盘设计[J]. 电子设计工程, 2023, 31(5):94-97.
LONG ZH H, ZHOU K. Design of an electronic compass based on magnetoresistive sensors[J]. Electronic Design Engineering, 2023, 31(5):94-97. (in Chinese)
[15]
WANG R, HUANG X, LI J, et al. Accurate Offset Angle Detection Strategy for Wireless Charging Coils Based on Electronic Compasses[J]. IEEE Access, 2021(99): 1.DOI:10.1109/ACCESS.2021.3071755.
[16]
段国文, 杨迪, 吕辰. 三轴磁传感器在线误差补偿方法[J]. 传感器与微系统, 2023, 42(5):41-44.
DUAN G W, YANG D, LV CH. Online Error Compensation Method for Three Axis Magnetic Sensors[J]. Sensors and Microsystems, 2023, 42(5):41-44. (in Chinese)

基金

国防基金项目(2021-JJ-0726)

编辑: 薛士然
PDF(1309 KB)

Accesses

Citation

Detail

段落导航
相关文章

/