电场调控增强型背照式单光子雪崩二极管

李聪, 王哲, 杨旭, 田娜, 冯鹏, 窦润江, 于双铭, 刘剑, 吴南健, 李传波, 刘力源

集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (10) : 1-8.

PDF(12311 KB)
PDF(12311 KB)
集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (10) : 1-8. DOI: 10.20193/j.ices2097-4191.2024.0035
封面文章

电场调控增强型背照式单光子雪崩二极管

作者信息 +

Field-controlled enhancement backside-illuminated single photon avalanche diode

Author information +
文章历史 +

摘要

本研究利用搭建的仿真设计平台开发了一款电场调控增强型背照式单光子雪崩二极管(SPAD)器件,通过调控SPAD雪崩区电场,进一步提升了背照式器件的光子探测效率,降低了暗计数率。仿真结果表明,本研究设计的SPAD在水平和垂直电场的协同作用下,有效提高了电子倍增效率,峰值探测效率达到50.1%,在过偏压为3 V时,暗计数率降低至764 Hz。本文对比分析了不同耗尽层厚度和P-Well半径对电场调控增强型背照式SPAD器件性能的影响,并确定了最优结构尺寸。研究结果为基于SPAD的高精度光电探测应用提供了新的技术途径,为SPAD器件在科学研究和工业应用中的进一步发展奠定了基础。

Abstract

This study developed a Field-Controlled Enhancement Backside-Illuminated Single-Photon Avalanche Diode (SPAD) device using a simulation design platform. By adjusting the electric field in the avalanche region of the backside-illuminated SPAD, the photon detection efficiency was further improved, and the dark count rate was reduced. Simulation results indicate that the SPAD design effectively enhances electron multiplication efficiency through the synergistic effect of horizontal and vertical electric fields, achieving a peak detection efficiency of 50.1%. At an excess bias voltage of 3 V, the dark count rate decreased to 764 Hz. The study compares and analyzes the effects of different depletion layer thicknesses and P-Well radius on the performance of the field-controlled enhanced backside SPAD device, determining the optimal structural dimensions. The results provide a new technical approach for high-precision photoelectric detection applications based on SPAD and lay the groundwork for further development and application of SPAD technology in scientific research and industrial applications.

关键词

单光子雪崩二极管 / 背照式 / 光子探测效率 / 暗计数率 / 电场调控 / 器件仿真

Key words

SPAD / back illumination / photon detection efficiency / dark count rate / electric field regulation / device simulation

引用本文

导出引用
李聪, 王哲, 杨旭, . 电场调控增强型背照式单光子雪崩二极管[J]. 集成电路与嵌入式系统. 2024, 24(10): 1-8 https://doi.org/10.20193/j.ices2097-4191.2024.0035
LI Cong, WANG Zhe, YANG Xu, et al. Field-controlled enhancement backside-illuminated single photon avalanche diode[J]. Integrated Circuits and Embedded Systems. 2024, 24(10): 1-8 https://doi.org/10.20193/j.ices2097-4191.2024.0035
中图分类号: TN364   

参考文献

[1]
PETER S, ALBERT JP T. Single photon imaging[M]. Springer, 2011.
[2]
FISHBURN MW. Fundamentals of CMOS Single Photon Avalanche Diodes[J]. Delft University of Technology, 2012.DOI:10.4233/uuid:7ed6e57d404e437280536b0b5c7fa0fe.
[3]
曹静, 张钊, 祁楠, 等. 用于LiDAR的16×1列阵CMOS单光子TOF图像传感器[J]. 光学学报, 2019, 48(7):704001.
CAO J, ZHANG ZH, QI N, et al. A 16×1 Pixels 180nm CMOS SPAD based TOF Image Sensor for LiDAR Applications[J]. ACTA PHOTONICA SINICA, 2019, 48(7):704001(in Chinese).
[4]
KUMAGAI O, OHMACHI J, MATSUMURA M, et al. A 189×600 back illuminated stacked SPAD direct time of flight depth sensor for automotive LiDAR systems[C]// 2021 IEEE International Solid State Circuits Conference (ISSCC).IEEE, 2021, 64:110-112.
[5]
TIAN N, WANG Z, MA K, et al. A 128 × 128 SPAD LiDAR sensor with column-parallel 25ps resolution TA-ADCs[J]. J. Semicond., 2024, 45(8):082201.
[6]
GYONGY I, CALDER N, DAVIES A, et al. A 256×256, 100 kfps,61% Fill Factor SPAD Image Sensor for Time Resolved Microscopy Applications[J]. IEEE Transactions on Electron Devices, 2017, 65(2):547-554.
[7]
ULKU A C, BRUSCHINI C, ANTOLOVIC'I M, et al. A 512×512 SPAD image sensor with integrated gating for widefield FLIM[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 25(1):1-12.
[8]
LIU Y, FAN R, ZHAO Y, et al. A Junction-Optimized SPAD With 50.6% Peak PDP and 0.64 cps/μm2 DCR at 2V Excess Bias Voltage in 130 nm CMOS[J]. IEEE Electron Device Letters, 2024, 45(3):308-311.
[9]
SUN W, WANG Y, LIU M, et al. A Back-Illuminated 4μm P+N-Well Single Photon Avalanche Diode Pixel Array With 0.36 Hz/μm2 Dark Count Rate at 2.5 V Excess Bias Voltage[J]. IEEE Electron Device Letters, 2022, 43(9):1519-1522.
[10]
HU H, WANG Y, LIU P, et al. Advanced Back-Illuminated Silicon Photomultipliers With Surrounding P+ Trench[J]. IEEE Sensors Journal, 2022, 22(16):16089-16097.
[11]
AL ABBAS T, DUTTON N A W, ALMER O, et al. Backside illuminated SPAD image sensor with 7.83μm pitch in 3D-stacked CMOS technology[C]// 2016 IEEE International Electron Devices Meeting (IEDM).IEEE, 2016:8.1.1-8.1.4.
[12]
ITO K, OTAKE Y, KITANO Y, et al. A back illuminated 10μm SPAD pixel array comprising full trench isolation and cu-cu bonding with over 14% pde at 940nm[C]// 2020 IEEE International Electron Devices Meeting (IEDM).IEEE, 2020:16.6.1-16.6.4.
[13]
SHIMADA S, OTAKE Y, YOSHIDA S, et al. A back illuminated 6μm SPAD pixel array with high PDE and timing jitter performance[C]// 2021 IEEE International Electron Devices Meeting (IEDM).IEEE, 2021:20.1.1 20.1.4.
[14]
SARKAR A. Investigation of the forward gate leakage current in pGaN/AlGaN/GaN HEMTs through TCAD simulations[J]. Semiconductor Science and Technology, 2024, 39(7).
[15]
曹静. CMOS单光子TOF图像传感器关键技术研究[D]. 北京: 中国科学院大学, 2019.
CAO J. Research on Key Technology of TOF imaging sensor based on Single Photon Avalanche Diode[D]. Beijing: University of Chinese Academy of Sciences, 2019(in Chinese).

基金

国家自然科学基金项目(62334008)
国家自然科学基金项目(62274190)
国家自然科学基金项目(61934007)
国家自然科学基金项目(62134004)

编辑: 薛士然
PDF(12311 KB)

Accesses

Citation

Detail

段落导航
相关文章

/