基于全数字锁相环优化的快速跳频技术研究

王锋, 郭中会, 徐国栋, 庞洋, 张一萌

集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (4) : 10-16.

PDF(4353 KB)
PDF(4353 KB)
集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (4) : 10-16. DOI: 10.20193/j.ices2097-4191.2024.04.002
研究论文

基于全数字锁相环优化的快速跳频技术研究

作者信息 +

Research on fast frequency hopping technology based on all digital phase locked loop optimization

Author information +
文章历史 +

摘要

针对全数字锁相环(ADPLL)在跳频时间、信号质量、频率步进等方面的不足,对ADPLL的环路结构和数字锁频算法进行了优化,设计了一种新型全数字锁相环结构。该结构采用快速频率-电压转换器(FVC)替代ADPLL中的数字鉴频鉴相器和数字滤波器。FVC通过将参考频率进行倍频,再对反馈频率进行计数,直接计算出输出频率值,进而确定输出频率与目标输出频率的误差,通过建立频率误差与调整电压的函数关系,控制输出频率的快速锁定,实现了小步进、高质量的快速合成频率输出。最后,通过仿真和实测验证了新型全数字锁相环结构的可行性。实测结果表明,该技术合成的频率近端杂散为-87 dBc,频率步进最小可以达到191 Hz,跳频时间最小为3.9 μs。

Abstract

Aiming at the shortcomings of all digital phase-locked loop (ADPLL) in terms of frequency hopping time,signal quality,frequency stepping,the loop structure and digital phase-locked algorithm of ADPLL are optimized,and a new type of all digital phase-locked loop structure is designed.This structure adopts a Fast Frequency to Voltage Converter (FVC) to replace the digital frequency and phase discriminator and digital filter in ADPLL.FVC calculates the output frequency value directly by doubling the reference frequency and counting the feedback frequency,thereby determining the error between the output frequency and the target output frequency.By establishing a functional relationship between frequency error and voltage adjustment,FVC controls the fast locking of the output frequency,achieving small frequency steps and high-quality fast synthesis frequency output.Finally,the feasibility of the new all digital phase-locked loop structure has been verified through simulation and actual measurement.The actual test results show that the frequency near end spurious synthesized by this technology is -87 dBc,the minimum frequency step can reach 191 Hz,and the minimum frequency hopping time is 3.9 μs.

关键词

频率合成技术 / 快速跳频 / 快速频率-电压转换器 / 全数字锁相环

Key words

frequency synthesis technology / fast frequency hopping / FVC / ADPLL

引用本文

导出引用
王锋, 郭中会, 徐国栋, . 基于全数字锁相环优化的快速跳频技术研究[J]. 集成电路与嵌入式系统. 2024, 24(4): 10-16 https://doi.org/10.20193/j.ices2097-4191.2024.04.002
WANG Feng, GUO Zhonghui, XU Guodong, et al. Research on fast frequency hopping technology based on all digital phase locked loop optimization[J]. Integrated Circuits and Embedded Systems. 2024, 24(4): 10-16 https://doi.org/10.20193/j.ices2097-4191.2024.04.002
中图分类号: TN99    TN92 (无线通信)   

参考文献

[1]
CHENG Z, LI W M, ZHANG D W, et al. A high reliable low noise frequency synthesizer design[C]// 2020 IEEE International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA): IEEE:1246-1249.
[2]
李轶晖. 小型化捷变频频率合成技术研究[D]. 成都: 电子科技大学, 2023.
LI Y H. Research on miniaturized agile frequency synthesis technology[D]. Chengdu: University of Electronic Science and Technology of China, 2023. (in Chinese)
[3]
吴呈煜. 短波段频率数字合成与精确测量技术[D]. 南京: 南京理工大学, 2011.
WU CH Y. Short band frequency digital synthesis and precise measurement technology[D]. Nanjing: Nanjing University of Science and Technology, 2011. (in Chinese)
[4]
陈祥雨. 一种对小数N分频PLL的自抖动和时钟优化方法[J]. 无线电工程, 2023, 53(8):1844-1852.
CHEN X Y. A self jitter and clock optimization method for fractional N-division PLL[J]. Radio Engineering, 2023, 53(8):1844-1852. (in Chinese)
[5]
杨光, 蒋国琼, 田殷, 等. 一种基于多通道DDS的低杂散宽带频率合成器[C]// 2020年全国微波毫米波会议论文集(下册), 2020:3.
YANG G, JIANG G Q, TIAN Y, et al. A low spurious broadband frequency synthesizer based on multi-channel DDS[C]// Proceedings of the 2020 National Microwave and Millimeter Wave Conference (Volume 2), 2020:3. (in Chinese)
[6]
张博. 基于直接合成技术的通信频率源的设计与实现[C]// 2022年全国微波毫米波会议论文集(上册), 2022:3.
ZHANG B. Design and Implementation of Communication Frequency Source Based on Direct Synthesis Technology[C]// Proceedings of the 2022 National Microwave and Millimeter Wave Conference (Volume 1), 2022:3. (in Chinese)
[7]
王鹏. 基于广义二阶积分的数字锁相环设计与实现[J]. 电气技术与经济, 2022(6):41-44,71.
WANG P. Design and Implementation of Digital Phase Locked Loop Based on Generalized Second Order Integration[J]. Electrical Technology and Economics, 2022(6):41-44,71. (in Chinese)
[8]
LOTFY AMR, GHONEIMAMAGED,ABDEL-MONEUM MOHAMED. A fast locking hybrid TDC-BB ADPLL utilizing proportional derivative digital loop filter and power gated DCO[C]// International Symposium on Circuits and Systems, 2016.
[9]
张宪伟. 全数字锁相环的研究与设计[D]. 南京: 南京邮电大学, 2021.
ZHANG X W. Research and Design of Fully Digital Phase Locked Loop[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2021. (in Chinese)
[10]
贾栋梁. 应用于SoC时钟的全数字锁相环的研究与设计[D]. 南京: 南京邮电大学, 2022.
JIA D L. Research and design of an all digital phase-locked loop applied to SoC clocks[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2022. (in Chinese)
[11]
赵林, 方益民. 基于CPLD的自动变模全数字锁相环设计及仿真[J]. 计算机仿真, 2022, 39(1):279-282.
ZHAO L, FANG Y M. Design and simulation of an automatic variable modulus all digital phase-locked loop based on CPLD[J]. Computer Simulation, 2022, 39 (1):279-282. (in Chinese)
[12]
蒋小平, 陈晓飞. 基于二阶系统阶跃响应辨识传递函数的实验设计[J]. 自动化技术与应用, 2023, 42(2):10-13.
JIANG X P, CHEN X F. Experimental design of transfer function identification based on second-order system step response[J]. Automation Technology and Applications, 2023, 42(2):10-13. (in Chinese)
[13]
胡寿松. 自动控制原理[M]. 7版. 北京: 科学出版社, 2019:247.
HU SH S. Principles of Automatic Control[M]. 7th Edition.Beijing: Science Press, 2019:247. (in Chinese)
[14]
沈梦琪. 基于DTC的小数全数字锁相环研究与设计[D]. 南京: 南京邮电大学, 2020.
SHEN M Q. Research and Design of Decimal All Digital Phase Locked Loop Based on DTC[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2020. (in Chinese)
[15]
林鑫. 基于小数N分频的电荷泵锁相环研究与设计[D]. 深圳: 深圳大学, 2017.
LIN X. Research and Design of Charge Pump Phase Locked Loop Based on Fractional N Division[D]. Shenzhen: Shenzhen University, 2017. (in Chinese)

编辑: 薛士然
PDF(4353 KB)

Accesses

Citation

Detail

段落导航
相关文章

/