异构神经网络芯片片上网络的行为级仿真器设计

吴良顺, 陶涛, 张斌

集成电路与嵌入式系统 ›› 2025, Vol. 25 ›› Issue (12) : 1-7.

PDF(8356 KB)
PDF(8356 KB)
集成电路与嵌入式系统 ›› 2025, Vol. 25 ›› Issue (12) : 1-7. DOI: 10.20193/j.ices2097-4191.2025.0063
智能嵌入式系统软硬件协同设计与应用专栏

异构神经网络芯片片上网络的行为级仿真器设计

作者信息 +

Behavioral-level simulator design for network-on-chip in heterogeneous neural network chips

Author information +
文章历史 +

摘要

随着神经网络模型日益复杂,片上网络(Network-on-Chip, NoC)在异构计算系统中扮演着关键通信角色。然而,传统NoC仿真工具普遍缺乏对矩阵处理单元与RISC-V可编程核等异构计算单元的支持,难以满足大规模人工智能任务对实时性、吞吐量与能效的需求。为应对上述挑战,提出并实现了一种面向异构计算的行为级NoC仿真框架,具备高精度节点建模、动态流水线机制、混合任务感知路由算法以及全链路可视化调试能力。实验结果表明,本文框架在平均延迟、吞吐量与可视化调试效率方面相较传统方法均显著提升,尤其在混合任务流和硬件故障场景下展现出更高的稳定性与可扩展性,为下一代智能计算平台的NoC设计与优化提供了重要支撑。

Abstract

As neural network models become increasingly complex, Network-on-Chip (NoC) plays a critical communication role in heterogeneous computing systems. However, the traditional NoC simulation tools generally lack support for heterogeneous computing units such as matrix processing units and RISC-V programmable cores, making it difficult to meet the requirements of large-scale AI tasks in terms of real-time performance, throughput, and energy efficiency. To address these challenges, this paper proposes and implements a behavior-level NoC simulation framework for heterogeneous computing. The framework features high-precision node modeling, a dynamic pipelining mechanism, a hybrid task-aware routing algorithm, and full-path visualization and debugging capabilities. The experimental results demonstrate that the proposed framework significantly outperforms traditional methods in average latency, throughput, and visualization debugging efficiency. Notably, it exhibits greater stability and scalability in scenarios involving hybrid task flows and hardware faults, providing strong support for the design and optimization of NoC in next-generation intelligent computing platforms.

关键词

异构计算 / 片上网络 / 行为级仿真 / 动态流水线 / 混合路由算法 / AI加速器

Key words

heterogeneous computing / network-on-chip / behavior-level simulation / dynamic pipeline / hybrid routing algorithm / AI hardware

引用本文

导出引用
吴良顺, 陶涛, 张斌. 异构神经网络芯片片上网络的行为级仿真器设计[J]. 集成电路与嵌入式系统. 2025, 25(12): 1-7 https://doi.org/10.20193/j.ices2097-4191.2025.0063
WU Liangshun, TAO Tao, ZHANG Bin. Behavioral-level simulator design for network-on-chip in heterogeneous neural network chips[J]. Integrated Circuits and Embedded Systems. 2025, 25(12): 1-7 https://doi.org/10.20193/j.ices2097-4191.2025.0063
中图分类号: TP303.6   

参考文献

[1]
PÉREZ I, VALLEJO E, MORETO M, et al. BST:A BookSim-based toolset to simulate NoCs with single-and multi-hop bypass[C]// Proceedings of the 2020 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS).IEEE, 2020:47-57.
[2]
CATANIA V, MINEO A, MONTELEONE S, et al. Noxim:An open,extensible and cycle-accurate network on chip simulator[C]// Proceedings of the 2015 IEEE 26th International Conference on Application-Specific Systems, Architectures and Processors (ASAP).IEEE, 2015:162-163.
[3]
颜军, 唐芳福, 张志国, 等. 异构多核人工智能SoC芯片的低功耗设计[J]. 航天控制, 2020, 38(2):7.DOI:CNKI:SUN:HTKZ.0.2020-02-019.
YAN J, TANG F F, ZHANG Z G, et al. Heterogeneous multi-core SoC chip of artificial intelligence of low power design[J]. Aerospace control, 2020, 38(2):7.DOI:CNKI:SUN:HTKZ.0.2020-02-019 (in Chinese).
[4]
刘勇鹏, 王锋, 卢凯, 等. 面向异构并行计算系统的流水线式压缩检查点[J]. 电子学报, 2012.DOI:CNKI:SUN:DZXU.0.2012-02-003.
LIU Y P, WANG F, LU K, et al. Heterogeneous parallel computing system oriented assembly line type compression checkpoint[J]. Journal of electronics, 2012.DOI:CNKI:SUN:DZXU.0.2012-02-003 (in Chinese).
[5]
李佳芯, 龚俊, 赵磊. 基于昇腾AI处理器的多路视频检测技术[J]. 兵器装备工程学报, 2025, 46(1):258-266.
LI J X, GONG J, ZHAO L. Multi-channel video detection technology based on the ascend AI processor[J]. Journal of Ordnance Engineering, 2025, 46(1):258-266 (in Chinese).
[6]
毕秋波. AI模型训练和开放服务平台的研究与实现[D]. 北京: 北京邮电大学, 2021.
BI Q B. Research and Implementation of AI Model Training and Open Service Platform[D]. Beijing: Beijing University of Posts and Telecommunications, 2021 (in Chinese).
[7]
陈小帆, 杨智杰, 彭凌辉, 等. 一种类脑处理器片上网络的验证框架[J]. 计算机工程与科学, 2022, 44(5):769-777.
CHEN X F, YANG Z J, PENG L H, et al. A verification framework for on-chip networks of brain-like processors[J]. Computer Engineering and Science, 2022, 44(5):769-777 (in Chinese).
[8]
朱立贤, 田福泽, 董群喜, 等. 基于异步芯片的多模态神经生理信号采集技术[J]. 计算机与处理, 2022(6):101-108.
ZHU L X, TIAN F Z, DONG Q X, et al. Multimodal neurophysiological signal acquisition technology based on asynchronous chip[J]. Computers and Processing, 2022(6):101-108 (in Chinese).
[9]
赵庆林, 韩鹏飞, 徐嘉昊, 等. 面向类脑计算片上互连的可视化测试系统[J]. 电子学报, 2023, 51(1):124-132.
ZHAO Q L, HAN P F, XU J H, et al. A Visualization Test System for Brain-inspired Computing on-chip Interconnects[J]. Journal of Electronics, 2023, 51(1):124-132 (in Chinese).
[10]
潘中良. 系统芯片SoC的设计与测试[M]. 北京: 科学出版社, 2009.
PAN Z L. System-on-chip (SoC) design and testing[M]. Beijing: Science Press, 2009 (in Chinese).
[11]
薛海. 面向人工智能的信息技术体系重构—《中国信息科学技术发展路线图》综述[J]. 中国科学院院刊, 2021, 36(6):699-708.
XUE H. Reconstructing the Information Technology System for Artificial Intelligence-Review of the Development Roadmap of China's Information Science and Technology[J]. Chinese Journal of the Chinese Academy of Sciences, 2021, 36(6):699-708 (in Chinese).

基金

新疆政法学院校长基金(XZZK2022002)
上海交通大学科研预研基金项目
教育部嵌入式系统与服务计算重点实验室开放课题(ESSCKF2024-10)
上海市高可信计算重点实验室开放课题(24Z670103399)
计算神经科学与类脑智能教育部重点实验室开放课题(25Z67010205)

责任编辑: 薛士然
PDF(8356 KB)

Accesses

Citation

Detail

段落导航
相关文章

/