基于国产FPGA与类ASIC架构的图像识别系统

陈冠夫, 兰小磊, 陈镇城, 张艺豪, 陈林亮, 李赛

集成电路与嵌入式系统 ›› 0

集成电路与嵌入式系统 ›› 0 DOI: 10.20193/j.ices2097-4191.2025.0114

基于国产FPGA与类ASIC架构的图像识别系统

  • 陈冠夫, 兰小磊, 陈镇城, 张艺豪, 陈林亮, 李赛
作者信息 +

Image Recognition System Based on Domestic FPGA and ASIC Structure

  • Chen Guanfu, Lan Xiaolei, Chen Zhencheng, Zhang Yihao, Chen Linliang, Li Sai
Author information +
文章历史 +

摘要

FPGA是边缘计算技术的主要平台之一,在边缘侧图像识别领域具有广阔应用前景。为实现实时图像识别的端侧部署,本文设计并实现了一种基于国产FPGA与自主设计类ASIC架构的嵌入式系统。软件层面,提出了一种轻量级神经网络NexusEdgeNet,以仅0.184MB参数量,对39类农田病害图像的识别准确率达到94.22%。硬件层面,创新性地设计了一款完全采用Verilog HDL描述的类ASIC加速器,采用分布式存储,不依赖外存储器,支持任意形状卷积、池化及全连接等算子。通过近存并行计算、流水线、滑动卷积窗口及双缓冲存储等优化策略,该神经网络加速器在中科亿海微EP6HL130 FPGA上实现了399 FPS的高推理帧率,大幅降低了逻辑资源使用量,计算资源利用率高达85%。系统集成图像采集、处理与显示链路,支持视频流的实时处理与识别。本系统在保持高精度的同时,具备优异的实时性与资源效率,为国产FPGA在边缘计算中的低成本应用提供了有价值的实践方案。

Abstract

Field-Programmable Gate Arrays (FPGAs) are key platforms for edge computing and have broad potential in edge-side image recognition. This paper presents an embedded system based on a domestically produced FPGA and a self-designed ASIC-like architecture for real-time edge deployment. On the software side, a lightweight neural network named NexusEdgeNet is proposed. It achieves 94.22% accuracy on 39 farmland disease categories with only 0.184 MB of parameters. On the hardware side, an ASIC-like accelerator fully described in Verilog is designed. It adopts a distributed on-chip memory structure, eliminating external memory access, and supports arbitrary-shaped convolution, pooling, and fully connected operations. Several optimization techniques are applied, including near-memory parallel computing, pipelining, sliding convolution windows, and double buffering. The accelerator reaches 399 FPS inference speed on the EP6HL130 FPGA, with 85% resource utilization and significantly reduced logic consumption. The system integrates image acquisition, processing, and display, supporting real-time video stream recognition. It maintains high accuracy while achieving excellent real-time performance and resource efficiency. This work provides a practical, low-cost solution for edge computing applications based on domestic FPGAs.

关键词

FPGA / 神经网络处理器 / 硬件加速 / 边缘计算 / 图像识别

Key words

FPGA / Neural Processing Unit / Hardware Acceleration / Edge Computing / Image Recognition

引用本文

导出引用
陈冠夫, 兰小磊, 陈镇城, 张艺豪, 陈林亮, 李赛. 基于国产FPGA与类ASIC架构的图像识别系统[J]. 集成电路与嵌入式系统. 0 https://doi.org/10.20193/j.ices2097-4191.2025.0114
Chen Guanfu, Lan Xiaolei, Chen Zhencheng, Zhang Yihao, Chen Linliang, Li Sai. Image Recognition System Based on Domestic FPGA and ASIC Structure[J]. Integrated Circuits and Embedded Systems. 0 https://doi.org/10.20193/j.ices2097-4191.2025.0114

Accesses

Citation

Detail

段落导航
相关文章

/