本文设计了基于深度学习网络的智能交通信号控制系统。使用数据平滑方法消除交通流数据的趋势,利用由多个限制玻尔兹曼机模型构成的深度信念网络模型学习交通流特征,并结合支持向量回归预测短时交通流,根据预测结果和排队消散时间实时判断车流放行方向以及进口放行绿灯时间,实现智能交通信号控制。实验结果表明,分别将延迟时间和节点数设置为10 ms和45个,可获得更优异的短时交通流预测效果。
Abstract
In the paper, an intelligent traffic signal control method based on deep learning network is designed.The data smoothing method is used to eliminate the trend of traffic flow data, the deep belief network model composed of multiple restricted Boltzmann machine models is used to learn the characteristics of traffic flow, and the short-term traffic flow is predicted combined with support vector regression.According to the prediction results and queue dissipation time, the release direction of traffic flow and the green light time of import release are judged in real time, so as to realize intelligent traffic signal control.The experiment results show that better short-term traffic flow prediction results can be obtained by setting the delay time and the number of nodes to 10 ms and 45 respectively.
关键词
深度学习网络 /
智能交通 /
信号控制 /
交通流预测
Key words
deep learning network /
intelligent transportation /
signal control /
traffic flow forecast
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘姝黎, 史健芳, 杨静.串口服务器在单点交通信号控制系统中的应用与设计[J].微电子学与计算机, 2018, 35(2):6770, 74.
[2] 魏永涛, 高原, 孙文义, 等.交通流动态扰动下的区域交通信号协调控制[J].自动化学报, 2019, 45(10):19831994.
[3] 李兴华, 霍艳凤, 靳聪聪, 等.基于NSBML模型的记忆密度在交通信号灯控制系统中的研究[J].计算机应用研究, 2019, 36(10):30273032.
[4] 曲昭伟, 潘昭天, 陈永恒, 等.考虑博弈的多智能体强化学习分布式信号控制[J].交通运输系统工程与信息, 2020, 20(2):8086, 104.
[5] 王安麟, 孙晓龙, 钟馥声.一种基于通行优先度规则的城市交通信号自组织控制方法[J].重庆交通大学学报(自然科学版), 2018, 37(2):96101.
[6] 李梅, 李静, 魏子健, 等.基于深度学习长短期记忆网络结构的地铁站短时客流量预测[J].城市轨道交通研究, 2018, 21(11):4246.
[7] 唐少虎, 周进, 尚春琳, 等.降雨情景下城市道路交通信号控制优化模型与方法[J].系统仿真学报, 2020, 32(2):149156.
[8] 王嘉文, 陈超, 金杨, 等.考虑人车交互的两相位信号控制交叉口行人专用相位设置条件[J].公路交通科技, 2020, 37(1):99106.
[9] 赵文天, 万夕里, 白光伟.城市交通流量预测与信号控制优化[J].小型微型计算机系统, 2019, 40(7):221226.
[10] 钱弘毅, 王丽华, 牟宏磊.基于深度学习的交通信号灯快速检测与识别[J].计算机科学, 2019, 46(12):272278.
[11] 李岩, 南斯睿, 马静, 等.降雨天气单点交叉口交通信号控制优化方法[J].交通运输工程学报, 2018, 18(5):185194.
[12] 尚春琳, 刘小明, 沈辉, 等.潮汐车道清空与下游路口信号协同控制方法研究[J].交通运输系统工程与信息, 2019, 19(2):5663.
[13] 毛博, 徐恪, 金跃辉, 等.DeepHome:一种基于深度学习的智能家居管控模型[J].计算机学报, 2018, 41(12):26892701.
[14] 刘志, 曹诗鹏, 沈阳, 等.基于改进深度强化学习方法的单交叉口信号控制[J].计算机科学, 2020, 47(12):234240.
[15] 方宇恒, 徐中伟, 彭聪.信息物理融合系统环境下轨道交通信号安全控制规划研究[J].城市轨道交通研究, 2018, 21(4):3439, 48.
基金
四川省20182020年高等教育人才培养质量和教学改革项目(JG20181141)。