面向未知环境的机器人动态路径规划算法研究*

侯嘉瑞, 万熠, 梁西昌, 焦绪丽

集成电路与嵌入式系统 ›› 2022, Vol. 22 ›› Issue (1) : 29-32.

PDF(1530 KB)
PDF(1530 KB)
集成电路与嵌入式系统 ›› 2022, Vol. 22 ›› Issue (1) : 29-32.
专题论述

面向未知环境的机器人动态路径规划算法研究*

  • 侯嘉瑞1, 万熠2, 梁西昌2, 焦绪丽1
作者信息 +

Robot Dynamic Path Planning Algorithm for Unknown Environment

  • Hou Jiarui1, Wan Yi2, Liang Xichang2, Jiao Xuli1
Author information +
文章历史 +

摘要

针对未知地图环境下侦察巡检机器人路径规划算法存在的运算耗时较高、响应慢等问题,提出一种适用于未知地图信息情况下的动态路径规划方法及避障策略。首先,改进跳点搜索算法的关键点生成方法,针对大地图动态环境下的搜索需求提出“指定动态跳点”策略;其次,针对“指定动态跳点”策略在凹型障碍物内不易脱离等问题,提出“重搜索”策略;最后,在凹障碍物环境下开展仿真与实验。实验结果表明:在实验环境下,所提路径规划算法能够在保证运行路径较短的同时,规划算法平均耗时降低73.86%,搜索节点数平均减少71.28%,证明所提算法占用设备资源更少,效率更高。

Abstract

To solve the problems of high computational time and slow response in the path planning algorithm of the reconnaissance and inspection robot in the unknown map environment, a dynamic path planning method and obstacle avoidance strategy suitable for unknown map information are proposed.Firstly, improves the key point generation method of the Jump Point Search(JPS) algorithm, and propose a "designated dynamic jump point" strategy for the search requirements in a large map dynamic environment.Secondly, proposes a "re-search" strategy to address the problem of the "designated dynamic jump point" strategy that is not easy to detach from within a concave obstacle.Finally, carries out simulations and experiments in a concave obstacle environment.The experiment results show that in the experimental environment, the proposed path planning algorithm can ensure a shorter running path at the same time.The average time consumption of the planning algorithm is reduced by 73.86%, and the number of search nodes is reduced by 71.28%, which proves that the proposed algorithm occupies less equipment resources and is more efficient.

关键词

侦察巡检机器人 / 动态路径规划 / 跳点搜索

Key words

reconnaissance and inspection robot / dynamic path planning / jump point search

引用本文

导出引用
侯嘉瑞, 万熠, 梁西昌, 焦绪丽. 面向未知环境的机器人动态路径规划算法研究*[J]. 集成电路与嵌入式系统, 2022, 22(1): 29-32
Hou Jiarui1, Wan Yi2, Liang Xichang2, Jiao Xuli1. Robot Dynamic Path Planning Algorithm for Unknown Environment[J]. Integrated Circuits and Embedded Systems, 2022, 22(1): 29-32
中图分类号: TP242   

参考文献

[1] 梁永强.智能巡检机器人应用现状及问题探析[J].山东电力技术, 2018, 45(2):3134.
[2] 张承模, 田恩勇, 胡星, 等.变电站巡检机器人巡检路径规划策略的研究[J].自动化技术与应用, 2019, 38(11):8993.
[3] Liu X, Lin J, Jin Z, et al.Mobile Robot Path Planning Based on Environment Modeling of Grid Method in Unstructured Environment[J].Machine Tool & Hydraulics, 2016.
[4] 张燕, 李亨凡.移动机器人路径规划算法的对比研究[J].单片机与嵌入式系统应用, 2020, 20(7):5155.
[5] Liauw Y, Pratama P, Jeong S, et al.Experimental Comparison of A* and D* Lite Path Planning Algorithms for Differential Drive Automated Guided Vehicle[J].Lecture Notes in Electrical Engineering, 2014(282):555564.
[6] Jeddisaravi K, Alitappeh R J, Guimares F G.Multiobjective Mobile Robot Path Planning Based on A* Search[C]//2016 6th International Conference on Computer and Knowledge Engineering (ICCKE), IEEE, 2016:712.
[7] Fusic S J, Ramkumar P, Hariharan K.Path Planning of Robot Using Modified Dijkstra Algorithm[C]//2018 National Power Engineering Conference(NPEC), IEEE, 2018:15.
[8] Jia J, Pan J, Xu H, et al.An Improved Jps Algorithm in Symmetric Graph[C]//2015 Third International Conference on Robot, Vision and Signal Processing(RVSP), IEEE, 2015:208211.
[9] 朱大奇, 颜明重.移动机器人路径规划技术综述[J].控制与决策, 2010, 25(7):961967.
[10] 邱磊, 刘辉玲, 雷建龙.跳点搜索算法的原理解释及性能分析[J].新疆大学学报(自然科学版), 2016, 33(1):8087.
[11] 高菲, 孙清闻, 葛长赟, 等.水下探测搜救机器人设计与实现[J].单片机与嵌入式系统应用, 2020, 20(4):7578, 82.
[12] 张亚楠, 孙丰财, 史旭华.基于快速D~*Lite算法的移动机器人路径规划[J].数据通信, 2018(1):4651.
[13] 周祥明, 陈员义, 徐华银.联合D~* Lite算法与视觉的AGV路径规划与定位[J].兵器装备工程学报, 2020, 41(3):126130.
[14] Yang F, Zhang Q, Zhou Y, et al.Jump point search algorithm for path planning of home service robot[J].Journal of Beijing Information Science & Technology University, 2018.
[15] 晋玉强, 陈麒杰, 王陶昱.基于状态改变的机器人动态障碍物路径规划算法[J].南京航空航天大学学报, 2020, 52(6):861870.

基金

*山东省重大科技创新工程项目(2019JZZY010112);山东省重点研发计划项目(2020JMRH0202);山东大学实验室建设与管理研究重大项目(sy20211301);山东大学教育教学改革研究项目(2020Y211);山东大学教育教学改革研究项目(2021Y264)。
PDF(1530 KB)

54

Accesses

0

Citation

Detail

段落导航
相关文章

/