近年来医疗机构的增加导致医学信息数量急剧增加,许多医疗机构无法实时对医疗数据进行监控,为此设计了医学信息实时监控与分析系统。系统的应用服务层中融入了多种算法模型和数据分析模型,帮助系统快速对大量的医学数据进行处理和分析,使系统实时掌握数据的动态变化情况。数据采集模块中融合了子带分解和同步触发技术,子带信号通过并行和串行方式进行同步触发,加快了模块的数据传输速率,并保证同步采样。系统中的医学信息实体识别模型采用交叉共享的结构,能够同时提取数据集的交互特征,提高了模型的识别精度。实验结果显示,该研究系统的数据分析效率最高,整体时间不超过7 000 ms,实体识别精度最大为1。
Abstract
In recent years,the increase of the medical institution has caused a dramatic increase of medical information,many medical institutions can't real-time to monitor medical data,so a real-time monitoring and analysis of medical information system is designed.Several types of application service layer algorithm model and data analysis model are used in the system,which helps the system quickly to deal with a lot of medical data and analysis.The system can grasp the dynamic changes of data in real time.In the data acquisition module,subband decomposition and synchronous trigger technology are integrated.The subband signals are synchronously triggered in parallel and serial ways,which speeds up the data transmission rate of the module and ensures synchronous sampling.The entity recognition model of medical information in the system adopts the structure of cross-sharing,which can simultaneously extract the interactive features of the data set and improve the recognition accuracy of the model.The experiment results show that the data analysis efficiency of this system is the highest,the overall time is less than 7 000 ms,and the entity recognition accuracy is 1.
关键词
医学信息 /
监控分析 /
数据分析模型 /
同步触发 /
实体识别 /
交叉共享
Key words
medical information /
monitoring analysis /
data analysis model /
synchronous trigger /
entity recognition /
cross sharing
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张兰华,李玉娟,韩忠东,等.医学信息工程专业教育研究中的热点主题及前沿趋势探析—基于知识图谱的可视化分析[J].医学教育管理,2021,7(6):702709.
[2] 孙晶晶,张帆,张军亮,等.基于WOS的医学信息学领域研究现状分析[J].中华医学图书情报杂志,2021,30(1):6066.
[3] 金玮,左嵩,许健,等.基于词向量和深度学习模型的医疗数据分析方法研究[J].微型电脑应用,2021,37(5):2326.
[4] 谷丽霞,刘欣芃.基于深度学习的医疗数据智能分析与识别系统设计[J].电子设计工程,2021,29(10):4650.
[5] BabarM,Tariq M U,Alshehri M D,et al.Smart Teledentistry Healthcare Architecture for Medical Big Data Analysis using IoTenabled Environment[J].Sustainable Computing:Informatics and Systems,2022,35(3):100719.
[6] 路薇,孙东旭,高景宏,等.面向精准医疗的大数据分析与建模关键技术综述[J].中国医院管理,2021,41(5):1925.
[7] 刘珺,蔡迎,张向阳,等.医疗大数据分析技术在临床医学中的应用[J].中华医学图书情报杂志,2021,30(5):3943.
[8] Roberts J C,Sidonio R F,Halari I,et al.Bleeding patterns in patients before and after diagnosis of von Willebrand disease: Analysis of a US medical claims database[J].Haemophilia,2022,28(1):97108.
[9] 詹可强,潘哲林.基于区块链的医疗数据共享模型分析与研究[J].长春师范大学学报,2021,40(4):2831.
[10] 燕向晖,王未希.建设移动医疗信息化的应用前景与对策分析—基于大数据背景下[J].贵阳学院学报(社会科学版),2020,15(6):6672.
[11] 罗浩,汪鹏,赵浩宇.基于医疗大数据的可视化分析与应用[J].中国医疗设备,2020,35(11):122124,128.
[12] 龙跃飞,李泽滔.基于机器学习的医疗数据分析[J].智能计算机与应用,2020,10(12):1820,23.
[13] 张晨,计虹,金昌晓.医疗数据质量分析与治理对策探讨[J].中华医院管理杂志,2020,36(9):747750.
[14] Kipkulei J,Kangethe S,Boibanda F,et al.Assessment Methods Used during Clinical Years of Undergraduate Medical Education at Moi University School of Medicine,Kenya[J].Health,2022,14(3):10.