基于灰狼优化算法的智能电表嵌入式操作系统任务调度算法*

赵婷, 王爽, 段晓萌

集成电路与嵌入式系统 ›› 2022, Vol. 22 ›› Issue (10) : 55-57.

PDF(997 KB)
PDF(997 KB)
集成电路与嵌入式系统 ›› 2022, Vol. 22 ›› Issue (10) : 55-57.
技术纵横

基于灰狼优化算法的智能电表嵌入式操作系统任务调度算法*

  • 赵婷, 王爽, 段晓萌
作者信息 +

Task Scheduling Based on Grey Wolf Optimization Algorithm for Smart Meter Embedded Operating System

  • Zhao Ting, Wang Shuang, Duan Xiaomeng
Author information +
文章历史 +

摘要

基于当前比较先进的灰狼算法,研究其在智能电表操作系统处理服务程序节点的调度原理,提出了一种优化的任务调度算法。该算法完成了智能电表操作系统的计算任务分配,有效缩短了任务的调度时间并确保了多任务调度的实时性,实现了系统的调度均衡,最后通过仿真实验验证了算法的有效性。

Abstract

In the paper,based on the advanced Gray Wolf algorithm,we study the scheduling principle of the service program nodes in the smart meter operating system.The algorithm completes the computational task assignment of the smart meter operating system,effectively shortens the task scheduling time consumption and ensures the real-time multi-task scheduling,realizes the scheduling balance of the system.The effectiveness of the algorithm is verified through simulation experiments.

关键词

灰狼算法 / 负载均衡 / 嵌入式操作系统

Key words

gray wolf algorithm / load balancing / embedded operating system

引用本文

导出引用
赵婷, 王爽, 段晓萌. 基于灰狼优化算法的智能电表嵌入式操作系统任务调度算法*[J]. 集成电路与嵌入式系统. 2022, 22(10): 55-57
Zhao Ting, Wang Shuang, Duan Xiaomeng. Task Scheduling Based on Grey Wolf Optimization Algorithm for Smart Meter Embedded Operating System[J]. Integrated Circuits and Embedded Systems. 2022, 22(10): 55-57
中图分类号: TP31   

参考文献

[1] 陈珏羽,杨舟,周政雷,等.基于新一代智能量测体系的智能电能表应用场景研究[J].广西电力,2020,43(3):1621.
[2] 李亚玲,鲁建丽,贾子璇.计算机操作系统调度方法探究[J].决策探索(中),2020(2):80.
[3] 肖建明,张向利.一种改进的时间片轮转调度算法[J].计算机应用,2005,25(B12):2.
[4] Wang Yongyan,Wang Qiang,Wang Hongan,et al.Real-time scheduling algorithm based on priority table and its implementation[J].Journal of Software,2004(3):360370.
[5] Fan Ziguo.Research and simulation of CPU priority scheduling algorithm in multicore platform[D].Shanghai:East China Normal University,2013.
[6] Lv Wengkai,Yang Pengfei,Ding Yunqin,et al.JEDERL: A task scheduling optimization algorithm for heterogeneous computing platforms[J].Journal of Xi'an University of Electronic Science and Technology,2021(10):18.
[7] Abdullahi M,Ngadi M A,Dishing S I,et al.An efficient symbiotic organisms search algorithm with chaotic optimization strategy for multiobjective task scheduling problems in cloud computing environment[J].Journal of Network & Computer Applications,2019(5):6074.
[8] V Jeyakrishnan,P Sengottuvelan.A Hybrid Strategy for Resource Allocation and Load Balancing in Virtualized Data Centers Using BSO Algorithms[J].Wireless Personal Communications,2016,94(4).
[9] Mohmmed T,N Abdalrahman.A Load Balancing with Fault Tolerance Algorithm for Cloud Computing[C]//2020 International Conference on Computer,Control, Electrical, and Electronics Engineering (ICCCEEE),2021.
[10] Sm A,Smm B,Al A.Grey Wolf Optimizer[J].Advances in Engineering Software,2014(1):4661.
[11] Saremi S,Mirjalili S Z,Mirjalili S M.Evolutionary population dynamics and grey wolf optimizer[J].Neural Computing & Applications,2015,26(5):12571263.
[12] Calheiros R N,Ranjan R,Rose C D,et al.CloudSim:A Novel Framework for Modeling and Simulation of Cloud Computing Infrastructures and Services[J].Computer Science,2009.

基金

*国家电网有限公司总部科技项目(5700202055484A0000)。

PDF(997 KB)

Accesses

Citation

Detail

段落导航
相关文章

/