钼铼合金超声导波测温系统设计*

张明, 杨录, 李文强, 肖旭东, 那佳琪, 崔梦君

集成电路与嵌入式系统 ›› 2022, Vol. 22 ›› Issue (11) : 79-83.

PDF(1287 KB)
PDF(1287 KB)
集成电路与嵌入式系统 ›› 2022, Vol. 22 ›› Issue (11) : 79-83.
应用精选

钼铼合金超声导波测温系统设计*

  • 张明, 杨录, 李文强, 肖旭东, 那佳琪, 崔梦君
作者信息 +

Design of Mo-Re Alloy Ultrasonic Guided Wave Temperature Measurement System

  • Zhang Ming, Yang Lu, Li Wenqiang, Xiao Xudong, Na Jiaqi, Cui Mengjun
Author information +
文章历史 +

摘要

为实现高温恶劣环境下的精准测温,在课题组已经研制成功的钼铼合金超声导波测温传感器的基础上,开发了与之相配套的软硬件系统。硬件系统由FPGA主控电路、超声发射电路、回波接收电路、A/D转换电路和USB通信电路组成;软件系统是基于LabVIEW平台开发的一套控制界面,可以实现参数控制、超声回波显示、数据保存、互相关计算、温度解析及显示等功能。测试结果表明,该系统能够实现20~1 800 ℃范围内的测温,并且测量准确度较高,在实际工程中可作为一种测量设备被直接采用。

Abstract

In order to realize accurate temperature measurement under high temperature and harsh environment,a matching software and hardware system has been developed based on the Mo-Re alloy ultrasonic guided wave temperature sensor that has been successfully developed by the research group.The hardware system consists of FPGA main control circuit,ultrasonic transmitting circuit,echo receiving circuit,A/D conversion circuit and USB communication circuit.The software system is a set of control interface developed based on LabVIEW platform,which can realize the functions of parameter control,ultrasonic echo display,data storage,cross-correlation calculation,temperature analysis and display.The test results show that the system can realize the temperature measurement in the range of 20~1 800 ℃,and the measurement accuracy is high.It can be directly used as a kind of equipment in practical projects.

关键词

超声导波 / LabVIEW / FPGA / 数据采集系统

Key words

ultrasonic guided wave / LabVIEW / FPGA / data acquisition system

引用本文

导出引用
张明, 杨录, 李文强, 肖旭东, 那佳琪, 崔梦君. 钼铼合金超声导波测温系统设计*[J]. 集成电路与嵌入式系统. 2022, 22(11): 79-83
Zhang Ming, Yang Lu, Li Wenqiang, Xiao Xudong, Na Jiaqi, Cui Mengjun. Design of Mo-Re Alloy Ultrasonic Guided Wave Temperature Measurement System[J]. Integrated Circuits and Embedded Systems. 2022, 22(11): 79-83
中图分类号: TB551   

参考文献

[1] 苏世雄.超声导波测温关键技术研究与实现[D].太原:中北大学,2018.
[2] 顾卫杰,王超徽.基于超声波测量气体温度研究[J].传感器与微系统,2020,39(2):5253,57.
[3] 马大猷.现代声学理论基础[M].北京:科学出版社,2004:27.
[4] Liu S,Ren T.Ultrasonic tomography based temperature distribution measurement method[J].Measurement,2016(94):671679.
[5] Suresh Periyannan,Krishnan Balasubramaniam.Multilevel temperature measurements using ultrasonic waveguides[J].Measurement,2015(61).
[6] Jia Y,Skliar M.Ultrasonic Measurements of Temperature Distribution and Heat Fluxes Across Containments of Extreme Environments[C]//2019 IEEE International Ultrasonics Symposium (IUS),2019:940943.
[7] John M,Walton K,Skliar M.Ultrasonic Measurements of Temperature Distribution in Extreme Environments: Results of Power Plant Testing[C]//2020 IEEE International Ultrasonics Symposium (IUS),2020:14.
[8] 田苗,王高.超声脉冲测温技术初步研究[J].声学技术,2017,36(1):2731.
[9] 田力,杨录.超声导波谐振式温度传感器设计[J].电子测量技术,2020,43(17):159163.
[10] 张佳凯.超声导波在杆件中传播时的频散特性[J].工程与建设,2020,34(6):10271030.
[11] 郝璐瑶.高温高压下BBC金属材料(W、Mo、Fe和Ta)力学性能的第一性原理研究[D].太原:太原理工大学,2018.
[12] 刘宇,杨录,张琦.NiCr合金超声导波温度传感器的设计[J].电子测量技术,2020,43(2):158161.
[13] 肖旭东,杨录.基于钼铼合金的超声导波温度传感器设计[J].传感器与微系统,2022,41(1):106109.

基金

*地下目标毁伤技术国防重点学科实验室开放研究基金项目(DXMBJJ202102);山西省自然科学基金项目(201901D111161)。

PDF(1287 KB)

Accesses

Citation

Detail

段落导航
相关文章

/