物联环境下拥堵道路汽车最优通行路径选择*

苟丹丹, 张开生, 王放

集成电路与嵌入式系统 ›› 2022, Vol. 22 ›› Issue (12) : 32-36.

PDF(1322 KB)
PDF(1322 KB)
集成电路与嵌入式系统 ›› 2022, Vol. 22 ›› Issue (12) : 32-36.
技术纵横

物联环境下拥堵道路汽车最优通行路径选择*

  • 苟丹丹1, 张开生2, 王放3
作者信息 +

Optimal Path Selection for Vehicles on Congested Roads Under IoT Environment

  • Gou Dandan1, Zhang Kaisheng2, Wang Fang3
Author information +
文章历史 +

摘要

研究并提出了一种基于物联环境下拥堵道路汽车最优通行路径选择的“分布式”算法,通过计算物联环境下汽车行驶路况信息素,构建算法模型,推演拥堵道路汽车最优通行路径信息素发展趋势,标定拥堵道路重复路径优选信息,栅格化处理容易将通行道路信息素和路面障碍物重叠,由此选择基于局部最优和整体最优的拥堵道路汽车通行可行性路径。经过最优道路扩展运算和通行路径细化优选分析,在模拟运行环境下,测试验证了该算法优选方案及其决策支持下的最优通行路径的合理性、安全性与经济性。

Abstract

The traditional path planning and selection system is based on a single target object to select the access road,which is often prone to problems such as path overlap,many nodes,and great safety hazards,and causes risks such as road path overlap.In order to obtain the optimal travel path of vehicles on congested roads in the IoT environment,this study designs and proposes a "distributed" multi-objective optimization algorithm for optimal vehicle travel paths under complex congested road conditions.By calculating the pheromone of vehicle driving conditions in the IoT environment,an algorithm model is constructed to deduce the development trend of the pheromone of the optimal passage of vehicles on the congested road,and the optimal information of the repeated route of the congested road is calibrated.Therefore,the feasible path for vehicles on the congested road based on the local optimum and the overall optimum is selected.After the optimal road expansion operation and the optimization analysis of the pass path refinement,in the simulated operating environment,the test verifies the rationality,safety and economy of the algorithm optimization scheme and the optimal pass path under the decision support.

关键词

分布式算法模型 / 最优通行路径 / 信息素 / JTS框架 / 耦合性测试

Key words

distributed algorithm model / optimal path planning / pheromone / JTS framework / coupling test

引用本文

导出引用
苟丹丹, 张开生, 王放. 物联环境下拥堵道路汽车最优通行路径选择*[J]. 集成电路与嵌入式系统. 2022, 22(12): 32-36
Gou Dandan, Zhang Kaisheng, Wang Fang. Optimal Path Selection for Vehicles on Congested Roads Under IoT Environment[J]. Integrated Circuits and Embedded Systems. 2022, 22(12): 32-36
中图分类号: U462   

参考文献

[1] 王丽君,颜佳,韩涛,等.车联网协作通信移动接入点选择算法[J].华中科技大学学报,2019,47(6):4145,68.
[2] 杨玲敏,佘日辉,王红,等.随机时变特征下基于行程时间的路径选择算法[J].交通运输系统工程与信息,2017,17(5):122128,143.
[3] 李一清.移动智能导航最短路径自动选择算法研究[J].自动化与仪器仪表,2019(4):126128,133.
[4] 李睿,余剑峰,林亚平,等.基于公交网和道路交通网的出行线路选择算法研究[J].湖南大学学报,2008(10):8084.
[5] Yu X,Guo H.A Survey on IIoT Security[C]//2019 IEEE VTS Asia Pacific Wireless Communications Symposium (APWCS).Singapore: IEEE,2019:15.
[6] Zhou W,Jia Y,Peng A,et al.The Effect of IoT New Features on Security and Privacy:New Threats,Existing Solutions,and Challenges Yet to Be Solved[J].IEEE Internet of Things Journal,2019,6(2):16061616.
[7] Zheng X,Xu C,Hu X,et al.The Software/Hardware Codesign and Implementation of SM2/3/4 Encryption/Decryption and Digital Signature System[J].IEEE Transactions on ComputerAided Design of Integrated Circuits and Systems,2019(99):1.
[8] 王鑫,陈建凯,翟俊海.区间值属性单调决策树算法的扩展[J].计算机工程与科学,2020,42(3):557563.
[9] 郭彦鹏,胡文龙.差值扩展算法嵌入容量的研究与改进[J].电子科技,2015,28(11):3336.
[10] 张星,李清泉,方志祥,等.顾及地标与道路分支的行人导航路径选择算法[J].武汉大学学报,2013,38(10):12391242,1252.

基金

*陕西省科技计划(2017GY063);西安汽车职业大学科研基金项目——基于车联网的酒后驾车智能呼叫系统研究(2021KJ006)。

PDF(1322 KB)

Accesses

Citation

Detail

段落导航
相关文章

/