针对现有的车间流程制造系统存在计算框架成本高、分类数据精度低等问题, 本研究基于配置、运动、控制和优化模型搭建数字孪生系统, 开发了一种用于数字控制的硬件在环(HIL)系统, 提出了一种基于增量学习的非结构化数据分类模型。实验结果表明, 本研究分类精度最高为94%。
Abstract
In view of the high cost of calculation framework and low accuracy of classified data in the existing workshop process manufacturing system, this research is based on the configuration, motion, control, and optimization model to build a digital twin system, developed a hardware-in-the-loop (HIL) system for digital control, and proposed a classification of unstructured data using incremental learning model based on incremental learning.The experiment results show that the classification accuracy of this study is up to 94%.
关键词
数字孪生系统 /
增量学习 /
硬件在环系统 /
数字控制器 /
迭代逻辑
Key words
digital twin system /
incremental learning /
hardware in the loop system /
digital controller /
iterative logic
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 汪浩, 刘树青, 贾茜, 等.基于数字孪生的数控机床自动上下料系统设计[J].机械制造与自动化, 2021, 50(4):101103.
[2] 靳婷.面向数字孪生的二三维一体化地理信息系统建设[J].北京测绘, 2021, 35(7):839843.
[3] 王金江, 王舒辉, 张来斌, 等.基于数字孪生的压气站场设备风险智能决策系统[J].天然气工业, 2021, 41(7):115123.
[4] 刘海峰, 池威威, 贾志辉, 等.变电站数字孪生系统的设计与应用[J].河北电力技术, 2021, 40(3):814.
[5] 宗学妍.基于数字孪生的车间作业仿真与监控系统的设计与实现[D].沈阳:中国科学院大学(中国科学院沈阳计算技术研究所), 2021.
[6] 唐学用, 梁垚, 孙斌, 等.数字孪生技术在区域多能源系统中的应用展望[J].南方电网技术, 2021, 15(5):104114.
[7] Hsueh Y M, Ittangihal V R, Wu W B, et al.Fault Diagnosis System for Induction Motors by CNN Using Empirical Wavelet Transform[J].Symmetry, 2019, 11(10):1212.
基金
*国家电网有限公司科技项目(SGJLCC00KJJS2001830)资助。