摘要
本文首先介绍了一种基于智能手机传感器获取加速度等数据的App设计方法,设定了15种需要识别的动作、手机位置组合类别,收集了75万条运动数据记录;其次,采用滑动窗口技术分割时序数据,构建了有针对性的时域、频域特征指标,形成了不同窗口大小、步长的新样本系列;最后,通过分类结果筛选出性能优良的4类算法,证实了深度学习在特征构建方面的良好表现,探讨了滑动窗口大小、步长对识别结果的影响。这些成果对于构建人体行为识别系统具有一定参考价值。
Abstract
Firstly,an App design method is designed,which is based on smart phone sensor to obtain acceleration and other data,sets 15 action and mobile phone position combination categories to be recognized,and collects 750 000 motion data records.Secondly,the sliding window technology is used to segment the time-series data,and the targeted time-domain and frequency-domain characteristic indexes are constructed to form a new sample series with different window sizes and steps.Finally,four kinds of algorithm with excellent performance are selected through the classification results,which demonstrates the good performance of deep learning in feature construction,and discusses the influence of sliding window size and step size on the recognition results.These results have reference value for the construction of human behavior recognition system.
关键词
人体行为识别 /
手机传感器 /
滑动窗口技术 /
分类算法
Key words
human activity recognition /
smart phone sensor /
sliding window technology /
classification algorithm
蔡木生.
基于智能手机传感器的人体行为识别技术研究与实践*[J]. 集成电路与嵌入式系统. 2022, 22(3): 56-60
Cai Musheng.
Study and Practice of Human Activity Recognition Based on Smart Phone Sensor[J]. Integrated Circuits and Embedded Systems. 2022, 22(3): 56-60
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Boštjan Kalua.Java机器学习[M].武传海,译.北京:人民邮电出版社,2017:129-143.
[2] Akram Bayat.A Study on Human Activity Recognition Using Accelerometer Data from Smartphones[C]//The 11th International Conference on Mobile Systems and Pervasive Computing(MobiSPC-2014),2014.
[3] Greg Milette,Adam Stroud.Android传感器高级编程[M].裴佳迪,译.北京:清华大学出版社,2013:63-154.
[4] 赵宏.手机内置加速度传感器数据的空间坐标转换算法[J].计算机应用,2016,36(2):301-306.
[5] 周志华.机器学习[M].北京:清华大学出版社,2016:73-196.
基金
*广州大学华软软件学院科研课题—基于手机传感器的人体行为识别技术研究与应用(ky201908)。