基于卷积图神经网络的滚动轴承故障诊断算法

丁汕汕, 陈仁文, 刘飞, 刘昊

集成电路与嵌入式系统 ›› 2022, Vol. 22 ›› Issue (4) : 38-41.

PDF(1616 KB)
PDF(1616 KB)
集成电路与嵌入式系统 ›› 2022, Vol. 22 ›› Issue (4) : 38-41.
专题论述

基于卷积图神经网络的滚动轴承故障诊断算法

  • 丁汕汕, 陈仁文, 刘飞, 刘昊
作者信息 +

Fault Diagnosis Algorithm for Rolling Bearing Based on Convolution Graph Neural Network

  • Ding Shanshan, Chen Renwen, Liu Fei, Liu Hao
Author information +
文章历史 +

摘要

针对常规深度学习方法在直接处理一维时域振动信号进行故障诊断时诊断准确度较低的问题,提出了一种基于一维卷积神经网络(Convolution Neural Network,CNN)与图神经网络(Graph Neural Network,GNN)的滚动轴承故障诊断算法(CGNN)。首先通过一维卷积层对振动信号做自适应滤波与数据压缩预处理,然后将预处理后的一维特征数据转换为图结构数据,最后使用三层图神经网络来进行滚动轴承的故障诊断。在凯斯西储大学滚动轴承数据集(CWRU)上开展实验验证,结果表明,CGNN在各个工况下都能具有90%以上的故障诊断准确率。

Abstract

Aiming at the problem of low diagnostic accuracy of conventional deep learning methods when they directly processing one-dimensional time-domain vibration signals for rolling bearing fault diagnosis,a rolling bearing fault diagnosis algorithm based on one-dimensional convolutional neural network (CNN) and graph neural network (GNN) is proposed.First,perform adaptive data filtering and data compression preprocessing of the vibration signal through the one-dimensional convolutional neural network layers,then convert the preprocessed one-dimensional feature data into graph structure data,and in the end a three-layer graph neural network is used for fault diagnosis of rolling bearings.The experimental verification is carried out on the Case Western Reserve University Fault Rolling Bearing Data Set (CWRU).The results show that CGNN can have more than 90% accuracy of fault diagnosis under all operating conditions.

关键词

图神经网络 / 卷积神经网络 / 深度学习 / 滚动轴承 / 故障诊断

Key words

graph neural network / convolutional neural network / deep learning / rolling bearing / fault diagnosis

引用本文

导出引用
丁汕汕, 陈仁文, 刘飞, 刘昊. 基于卷积图神经网络的滚动轴承故障诊断算法[J]. 集成电路与嵌入式系统. 2022, 22(4): 38-41
Ding Shanshan, Chen Renwen, Liu Fei, Liu Hao. Fault Diagnosis Algorithm for Rolling Bearing Based on Convolution Graph Neural Network[J]. Integrated Circuits and Embedded Systems. 2022, 22(4): 38-41
中图分类号: TP183   

参考文献

[1] LEI Y.Intelligent fault diagnosis and remaining useful life prediction of rotating machinery[M].Butterworth-Heinemann,2016:32-36.
[2] LIU R,YANG B,ZIO E,et al.Artificial intelligence for fault diagnosis of rotating machinery: A review[J].Mechanical Systems and Signal Processing,2018(108):33-47.
[3] SHAO H,JIANG H,ZHAO H,et al.A novel deep au- toencoder feature learning method for rotating machinery fault diagnosis[J].Mechanical Systems and Signal Processing,2017(95):187-204.
[4] INCE T,KIRANYAZ S,EREN L,et al.Real-time mo- tor fault detection by 1-D convolutional neural networks[J].IEEE Transactions on Industrial Electronics,2016,63(11):7067-7075.
[5] WEI Z,LI C,PENG G,et al.A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load[J].Mechanical Systems and Signal Processing,2018(100):439-453.
[6] ZHANG B,LI W,HAO J,et al.Adversarial adaptive 1-D convolutional neural networks for bearing fault diagnosis under varying working condition,arXiv preprint arXiv:1805.00778,2018.
[7] WANG Z,WANG J,WANG Y.An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition[J].Neurocomputing,2018(310):213-222.
[8] ZHAO Z,LI T,WU J,et al.Deep Learning Algorithms for Rotating Machinery Intelligent Diagnosis: An Open Source Benchmark Study[J].ISA Transactions,2020:S0019057820303335.
[9] SCARSELLI F,GORI M,TSOI A C,et al.The graph neural network model[J].IEEE transactions on neural networks,2008,20(1):61-80.
[10] ORTEGA A,FROSSARD P,KOVACEVIC J,et al.Graph signal processing: Overview, challenges,and applications[J].Proceedings of the IEEE,2018,106(5):808-828.
[11] BRUNA J,ZAREMBA W,SZLAM A,et al.Spectral networks and locally connected networks on graphs[DB].arXiv preprint arXiv:1312.6203,2013.
[12] SUCH F P,SAH S,DOMINGUEZ M A,et al.Robust spatial filtering with graph convolutional neural networks[J].IEEE Journal of Selected Topics in Signal Processing,2017,11(6):884-896.
[13] YING R,HE R,CHEN K,et al.Graph convolutional neural networks for web-scale recommender systems[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,2018:974-983.
[14] SONG T,ZHENG W,SONG P,et al.EEG emotion recognition using dynamical graph convolutional neural networks[J].IEEE Transactions on Affective Computing, 2018,11(3):532-541.
[15] YU B,YIN H,ZHU Z.Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting[DB].arXiv preprint arXiv:1709.04875, 2017.
[16] KEARNES S,MCCLOSKEY K,BERNDL M,et al.Molecular graph convolutions:moving beyond fingerprints[J].Journal of computer-aided molecular design,2016,30(8):595-608.
[17] YOU J,LIU B,YING R,et al.Graph convolutional policy network for goal-directed molecular graph generation[DB].arXiv preprint arXiv:1806.02473, 2018.
[18] KHORASGANI H,HASANZADEH A,FARAHAT A,et al.Fault detection and isolation in industrial networks using graph convolutional neural networks[C]//2019 IEEE International Conference on Prognostics and Health Management (ICPHM).IEEE,2019:1-7.
[19] Liao W,Yang D,Y Wang,et al.Fault diagnosis of power transformers using graph convolutional network[J].中国电机工程学会电力与能源系统学报(英文),2021,7(2):9.
[20] ZHANG D,STEWART E,ENTEZAMI M,et al.Intel- ligent Acoustic-Based Fault Diagnosis of Roller Bearings Using a Deep Graph Convolutional Network[J].Measurement,2020(156):107585.
[21] KIPF T N,WELLING M.Semi-Supervised Classifica- tion with Graph Convolutional Networks[DB].arXiv:1609.02907,2017.
[22] MORRIS C,RITZERT M,FEY M,et al.Weisfeiler and Leman Go Neural:Higher-Order Graph Neural Networks[J].Proceedings of the AAAI Conference on Artificial Intelligence,2019(33):4602-4609.

PDF(1616 KB)

Accesses

Citation

Detail

段落导航
相关文章

/