设计了智能云视频宠物陪伴机器人。使用内嵌四核ARM Cortex-A53的NXP iMX 8处理器作为主控制器,搭载Linux操作系统;改进PID闭环速度算法可以更智能、精准地控制麦克纳姆轮,使机器人具备平面全向运动能力;使用带有FOC控制的无刷电机控制云台上安装的摄像头,实现水平方向360°旋转;基于Intel 9260无线模组实现Wi-Fi和蓝牙通信;通过FFmpeg编码、RTMP协议推送、Nginx服务器转发摄像头实时数据流。机械臂可根据用户需求安装/更换宠物的互动模块,实现远程环境监控和实时云视频宠物互动。视频数据推拉流平均延时约为150 ms,机器人在距离Wi-Fi节点约10 m范围内均有较好响应。
Abstract
In the paper,a smart cloud video pet companion robot is designed.The NXP iMX 8 processor with 4 Cortex-A53 cores is used as the main controller,embedded with Linux operating system.An improved PID closed-loop speed algorithm is developed to control the mecanum wheel more intelligently and accurately,so that the robot has the ability of plane omnidirectional motion.A FOC brushless motor is used to achieve camera pan-tilt 360° rotation in the horizontal direction,and realize Wi-Fi and Bluetooth communication based on the Intel 9260 wireless module.The camera real-time data is encoded through the FFmpeg technology,streamed by RTMP protocol,and transmitted by Nginx server.The robot arm can be replaced with alternative pet interaction modules to realize remote environmental control and real-time cloud video pet interaction.The average delay of the video data stream is about 150 ms, and the robot responds well within a range of about 10 m around the Wi-Fi node.
关键词
远程操控 /
实时云视频互动 /
宠物陪伴 /
PID /
FOC /
STM32F103
Key words
remote control /
real-time cloud video interaction /
pet companion /
PID /
FOC /
STM32F103
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王宇航,李峥,王喆,等.一组跟随式移动机器人系统的设计方法[J].单片机与嵌入式系统应用,2021,21(8):80-83.
[2] 艾博文,沈永良,张金富.基于H.264的云端视频监控系统设计[J].黑龙江大学工程学报,2015,6(4):68-72.
[3] 李敏,李嘉.基于宠物心理角度的宠物陪伴型机器人设计研究[J].大众文艺,2018(24):82-83.
[4] 杨琳,李媛,雷炬,等.智能宠物定时喂食器的设计[J].计算机与数字工程,2019,47(8):2056-2060.
[5] 杨德伟,易善强,王华.基于ARM和WiFi的无线视频传输实验系统[J].实验室研究与探索,2014,33(10):156-161.
[6] 刘成涛,李显鹏.姿态检测及模糊PID算法的自平衡小车[J].单片机与嵌入式系统应用,2019,19(7):78-80,85.
[7] 高菲,孙清闻,葛长赟,等.水下探测搜救机器人设计与实现[J].单片机与嵌入式系统应用,2020,20(4):75-78,82.
[8] 刘伟.永磁同步电机FOC算法研究及控制器设计[D].石家庄:河北科技大学,2020.
[9] 张新荣,林莲,张东升,等.基于磁场定向控制理论的无刷直流电机控制[J].电机与控制应用,2019,46(11):25-29,81.
基金
*基于体态监测的多源信息疾病辅助诊断与康复技术研究(20170540052)。