人工脉冲神经网络的AI数据融合平台设计

简丽娜, 童旸, 倪修峰, 高志国, 程汪刘, 李飞

集成电路与嵌入式系统 ›› 2022, Vol. 22 ›› Issue (5) : 88-91.

PDF(1057 KB)
PDF(1057 KB)
集成电路与嵌入式系统 ›› 2022, Vol. 22 ›› Issue (5) : 88-91.
应用精选

人工脉冲神经网络的AI数据融合平台设计

  • 简丽娜1, 童旸2, 倪修峰1, 高志国1, 程汪刘1, 李飞1
作者信息 +

Design of AI Data Fusion Platform Based on Artificial Pulse Neural Network

  • Jian Lina1, Tong Yang2, Ni Xiufeng1, Gao Zhiguo1, Cheng Wangliu1, Li Fei1
Author information +
文章历史 +

摘要

当前物联网系统中数据格式不统一,对大量数据进行处理分析和存储较为困难,本研究基于人工脉冲神经网络建立了新型AI数据融合平台,对多种数据源进行整合处理。对传统的神经网络进行改进,提出改进型的脉冲神经网络,结合了BP神经网络的空间信息,将脉冲信息通过膜电压的变化转换为时间信息,输出层输出的数据结合了空间信息与时间信息。结合多层双向LSTM网络建立PALC模型,提取数据的形态特征和语义特征,对平台中非结构化数据的实体信息进行抽取和融合。实验结果显示,本研究数据融合平台的数据库每秒查询率更高,QPS最高可达到59 863,信息抽取的准确率最高为99%。

Abstract

The current data formats in the Internet of Things system are not unified,which makes it difficult to process,analyze and store a large amount of data.In this study,a new AI data fusion platform is established based on artificial pulse neural network to integrate and process multiple data sources.An improved pulse neural network is proposed,which combines the spatial information of BP neural network and converts the pulse information into time information through the change of membrane voltage.The output data of the output layer combines the spatial information and time information.The PALC model is established based on the multi-layer bidirectional LSTM network to extract the morphological and semantic features of the data,and extract and merge the entity information of the unstructured data on the platform.The experiment results show that the database of the data fusion platform in this study has a higher query rate per second,the highest QPS can reach 59 863,and the highest accuracy rate of information extraction is 99%.

关键词

人工脉冲神经网络 / 数据融合平台 / 多层双向LSTM / PALC模型

Key words

artificial pulse neural network / data fusion platform / multilayer bidirectional LSTM / PALC model

引用本文

导出引用
简丽娜, 童旸, 倪修峰, 高志国, 程汪刘, 李飞. 人工脉冲神经网络的AI数据融合平台设计[J]. 集成电路与嵌入式系统. 2022, 22(5): 88-91
Jian Lina, Tong Yang, Ni Xiufeng, Gao Zhiguo, Cheng Wangliu, Li Fei. Design of AI Data Fusion Platform Based on Artificial Pulse Neural Network[J]. Integrated Circuits and Embedded Systems. 2022, 22(5): 88-91
中图分类号: TP37   

参考文献

[1] 孙欣.基于双数据中心的城市台融合媒体云平台建设[J].广播电视信息,2021,28(10):34-38.
[2] 丁磊.基于机器学习的数字媒体数据库资源快速调度方法[J].西安文理学院学报(自然科学版),2021,24(4):28-32.
[3] 韩建,路成辉,曹志民,等.基于多网络融合的缺失测井数据复原方法[J].计算机应用与软件,2021,38(10):67-71.
[4] 刘琦.多源异构大数据平台的建设及应用[J].软件工程,2021,24(10):54-58.
[5] 成玉荣,陈志坤,韩卫占.一种基于多维聚合模型的异构网络拓扑融合方法[J].无线电工程,2021,51(10):1162-1168.
[6] 孙淑娥,姚柳,赵怡.基于卷积神经网络的时间序列数据融合算法[J].西安石油大学学报(自然科学版),2021,36(5):136-142.
[7] 杨文佳,苗璐,樊玮,等.基于海量GIS数据的自动化故障融合监测技术[J].制造业自动化,2021,43(9):117-121.
[8] Wu W,Deng W,Huang Y,et al.Prediction of the working conditions for the pulse tube cooler based on artificial neural network model[J].Applied Thermal Engineering,2021,197(7):117424.
[9] J Jeevamalar.Modelling of Rotary EDM Process Parameters of Inconel 718 Using Artificial Neural Networks[J].Mechanika,2020,26(6):540-544.
[10] Mazurov M E.Mechanisms of Invariant Anti-Noise Encoding in Pulse Neural Networks[J].Bulletin of the Russian Academy of Sciences Physics,2020,84(1):73-77.

PDF(1057 KB)

Accesses

Citation

Detail

段落导航
相关文章

/