基于改进麻雀算法的图像自适应增强方法*

吴学梅, 牟莉

集成电路与嵌入式系统 ›› 2022, Vol. 22 ›› Issue (7) : 30-33.

PDF(1439 KB)
PDF(1439 KB)
集成电路与嵌入式系统 ›› 2022, Vol. 22 ›› Issue (7) : 30-33.
技术纵横

基于改进麻雀算法的图像自适应增强方法*

  • 吴学梅, 牟莉
作者信息 +

Image Adaptive Enhancement Method Based on Improved Sparrow Algorithm

  • Wu Xuemei, Mu Li
Author information +
文章历史 +

摘要

针对非完全Beta函数在图像增强过程中需手动调整参数、算法效率较低的问题,本文提出了一种基于改进麻雀搜索算法(LKSSA)的图像自适应增强方法(LKSSA-Beta)。首先,采用Logtistic混沌映射优化麻雀搜索算法(SSA)初始种群;其次,使用鸟群算法飞行行为思想及柯西高斯扰动提高SSA寻优能力;然后,利用LKSSA优化Beta函数的参数,构建灰度变换曲线,达到图像增强效果;最后,将本文算法与基于PSO图像增强法、基于人工蜂群图像增强法及基于传统Beta函数图像增强法实验结果进行对比。对比结果表明,LKSSA将具有更优的灰度图像全局搜索能力,本文算法可以保留图像更多细节信息,使图像整体对比度明显提高。

Abstract

Aiming at the problem that the parameters of incomplete Beta function need to be manually adjusted in the process of image enhancement and the algorithm efficiency is low,an adaptive image enhancement method (LKSSA-Beta) based on improved Sparrow Search algorithm(LKSSA) is proposed.Firstly,the initial population of sparrow search algorithm(SSA) is optimized by Logtistic chaotic mapping,maintaining population diversity.Next,the optimization ability of SSA is improved by using the flight behavior idea of bird swarm algorithm and Cauchy Gaussian disturbance.Then,LKSSA is used to optimize the parameters of the Beta function and construct the gray-scale transformation curve to achieve the image enhancement effect.Finally,the experiment results of LKSSA-Beta are compared with the image enhancement method based on PSO,the image enhancement method based on artificial bee colony,and the image enhancement method based on traditional Beta function.The results show that LKSSA will have better global search capabilities for grayscale images.LKSSA-Beta can preserve more detailed information of the image and make the overall contrast of the image more obvious.

关键词

自适应增强 / 麻雀算法 / 非完全Beta函数 / Logistic映射 / 柯西高斯扰动

Key words

adaptive enhancement / sparrow algorithm / incomplete Beta function / Logistic-map / Cauchy and Gaussian disturbance

引用本文

导出引用
吴学梅, 牟莉. 基于改进麻雀算法的图像自适应增强方法*[J]. 集成电路与嵌入式系统. 2022, 22(7): 30-33
Wu Xuemei, Mu Li. Image Adaptive Enhancement Method Based on Improved Sparrow Algorithm[J]. Integrated Circuits and Embedded Systems. 2022, 22(7): 30-33
中图分类号: TP39   

参考文献

[1] 靳阳阳,韩现伟,周书宁,等.图像增强算法综述[J].计算机系统应用,2021,30(6):18-27.
[2] 许红玉,王远军.空间域增强方法在CBCT中的应用研究[J].生物医学工程学进展,2020,41(1):1-4.
[3] 李雨,方怡,王振东,等.基于空间域噪声检测的彩色图像缩放增强方法[J].岭南师范学院学报,2017,38(6):98-102.
[4] 王成,张艳超.像素级自适应融合的夜间图像增强[J].液晶与显示,2019,34(9):888-896.
[5] Acharya U K,Kumar S.Genetic Algorithm based adaptive histogram equalization (GAAHE) technique for medical image enhancement[J].Optik-International Journal for Light and Electron Optics,2021,230(3):166273.
[6] 李文锋,韩宝如.基于混沌粒子群算法的图像模糊增强[J].激光杂志,2015,36(6):135-138.
[7] 王延年,程燕杰,钟正,等.基于人工蜂群优化的自适应图像增强方法[J].工具技术,2020,54(8):78-82.
[8] Wencheng Wang,Zhenxue Chen,Xiaohui Yuan,et al.Adaptive image enhancement method for correcting low-illumination images[J].Information Sciences,2019(496):25-41.
[9] Choi Sarah,Roy Bhaswati,Freeby Matihew,et al.Prefrontal cortex brain damage and glycemic control in patients with type 2 diabetes[J].Journal of diabetes,2020,12(6):465-473.
[10] Jia Chen,Weiyu Yu,Jing Tian,et al.Adaptive image contrast enhancement using artificial bee colony optimization[J].IEEE International Conference on Image Processing (ICIP),2017(24):3220-3224.
[11] 吕鑫,慕晓冬,张钧,等.混沌麻雀搜索优化算法[J].北京航空航天大学学报,2021,47(8):1712-1720.
[12] Xinguan Yang,Xiao Dong,Jiao Wang,et al.Computed Tomography-Based Radiomics Signature:A Potential Indicator of Epidermal Growth Factor Receptor Mutation in Pulmonary Adenocarcinoma Appearing as a Subsolid Nodule[J]. The Oncologist,2019.
[13] 毛清华,张强.融合柯西变异和反向学习的改进麻雀算法[J].计算机科学与探索,2021,15(6):1155-1164.

基金

*陕西省技术创新引导专项(基金)计划(2019CGXNG-015)。

PDF(1439 KB)

Accesses

Citation

Detail

段落导航
相关文章

/