基于MIPS32指令集对斐波那契数列的设计与实现

吴亚文, 韩跃平, 唐道光

集成电路与嵌入式系统 ›› 2022, Vol. 22 ›› Issue (8) : 70-74.

PDF(1374 KB)
PDF(1374 KB)
集成电路与嵌入式系统 ›› 2022, Vol. 22 ›› Issue (8) : 70-74.
新器件新技术

基于MIPS32指令集对斐波那契数列的设计与实现

  • 吴亚文1, 韩跃平1, 唐道光2
作者信息 +

Design and Implementation of Fibonacci Sequence Based on MIPS32 Instruction Set

  • Wu Yawen1, Han Yueping1, Tang Daoguang2
Author information +
文章历史 +

摘要

基于MIPS32指令集架构设计了一款可以实现斐波那契数列的处理器。处理器设计没有运用经典五级流水线技术,而是设计了六级流水线,并且采用数据定向前推的方法解决数据相关问题以及延迟转移,采用分支延迟槽的方法解决控制相关问题。设计完成后,使用Modelsim仿真软件对处理器进行指令集及功能仿真,仿真结果表明,在50 MHz时钟频率下处理器指令集及功能正常运行。最后,在FPGA开发板上进行验证,实现了软件与硬件交互,验证结果表明,该设计可以正确实现斐波那契数列,满足预期设计要求。

Abstract

Based on MIPS32 instruction set architecture,a processor which can realize Fibonacci sequence is designed.The processor design does not use the classical five stage pipeline technology,but designs a six stage pipeline,and uses the data oriented push forward method to solve the data related problems,as well as the methods of delay transfer and branch delay slot to solve the control related problems.After the design is completed,the instruction set and function of the processor are simulated by Modelsim simulation software.The simulation results show that the instruction set and function of the processor operate normally at the clock frequency of 50 MHz.Finally,it is verified on the FPGA development board to realize the interaction between software and hardware.The verification results show that the Fibonacci sequence can be realized correctly and meet the expected design requirements.

关键词

MIPS32 / 处理器 / 斐波那契数列 / FPGA

Key words

MIPS32 / processor / Fibonacci sequence / FPGA

引用本文

导出引用
吴亚文, 韩跃平, 唐道光. 基于MIPS32指令集对斐波那契数列的设计与实现[J]. 集成电路与嵌入式系统. 2022, 22(8): 70-74
Wu Yawen, Han Yueping, Tang Daoguang. Design and Implementation of Fibonacci Sequence Based on MIPS32 Instruction Set[J]. Integrated Circuits and Embedded Systems. 2022, 22(8): 70-74
中图分类号: TN402   

参考文献

[1] 郑宜嘉.一种兼容MIPS32指令集的RISC微处理器的设计与验证[D].西安:西安电子科技大学,2017.
[2] 李东泽,曹凯宁,曲明,等.五级流水线RISC-V处理器软硬件协同仿真验证[J].吉林大学学报(信息科学版),2017,35(6):612-616.
[3] 李正平,高杨.基于MIPS32架构三角函数指令集扩展的设计与实现[J].合肥工业大学学报(自然科学版),2021,44(5):612-615.
[4] 何小庆.RISC-V产业的现状与未来[J].单片机与嵌入式系统应用,2021,21(8):3.
[5] Jain N.VLSI Design and Optimized Implementation of a MIPS RISC Processor using XILINX Tool[J].International Journal of Advanced Research in Computer Science and ElectronicsEngineering(IJARCSEE),2012,1(10): 52-56.
[6] 瞿宝华,王阳阳,张天恒,等.基于斐波那契数列的双通道绝对式时栅设计[J].仪表技术与传感器,2021(7):1-4,25.
[7] 蔡秀梅,范九伦,高新波.基于斐波那契数列的指纹增强方向滤波模板[J].模式识别与人工智能,2011,24(3):360-367.
[8] 杨卫国,郑麟.基于斐波那契数列短码长QC-LDPC码的构造[J].指挥控制与仿真,2017,39(5):130-133.
[9] 怯肇乾,官莉萍,张晓强,等.RISC-V指令集及其微控制处理器的开发应用[J].单片机与嵌入式系统应用,2021,21(8):9-13.
[10] 刘秋菊,张光照,王仲英.基于MIPS指令集的流水线CPU设计与实现[J].实验室研究与探索,2017,36(8):148-152,172.
[11] 李宝平.一种兼容MIPS32指令集的32位软核处理器设计[D].南京:东南大学,2017.
[12] 孙巧稚,施慧彬.基于FPGA的六级流水线MIPS处理器设计[J].微电子学与计算机,2015,32(4):31-34,39.

PDF(1374 KB)

Accesses

Citation

Detail

段落导航
相关文章

/