行人异常越界行为识别的嵌入式系统设计*

杨森泉, 肖昌迪, 邱金宝, 周葛轩

集成电路与嵌入式系统 ›› 2023, Vol. 23 ›› Issue (10) : 74-76.

PDF(1985 KB)
PDF(1985 KB)
集成电路与嵌入式系统 ›› 2023, Vol. 23 ›› Issue (10) : 74-76.
应用精选

行人异常越界行为识别的嵌入式系统设计*

作者信息 +

Embedded System for Pedestrian Abnormal Crossing Behavior Detection

Author information +
文章历史 +

摘要

在现代化的居家、商业、工业等领域中,越界行为已经成为一种常见的安全风险。为解决现阶段越界行为识别算法存在实时性差、难以适应复杂场景等问题,设计行人异常越界行为识别嵌入式系统,通过YOLO算法进行目标检测,利用ByteTrack多目标跟踪算法跟踪关联检测到的目标,使用区域监测算法结合多目标跟踪算法的跟踪轨迹精准识别越界行为。实验结果表明,本系统能够部署在搭载Aidlux系统的智能手机上,在不同场景下实现对人体越界行为的准确识别,并发出警报信号,满足了大部分场景的应用需求。

Abstract

In modern fields such as home,commerce,and industry,cross-border behavior has become a common security risk.To address the issues of time-consuming performance and difficulty in adapting to complex scenes in the current algorithm for identifying pedestrian abnormal crossing behavior,an embedded system for identifying pedestrian abnormal crossing behavior is proposed.The YOLO algorithm is used for object detection,and the ByteTrack multi-objective tracking algorithm is used to track and associate the detected targets.The area monitoring algorithm is combined with the tracking trajectory of the multi-objective tracking algorithm to achieve accurate identification of crossing behavior.The experiment results have shown that the proposed system can be deployed on smartphones equipped with the Aidlux system,achieving accurate recognition of human behavior beyond boundaries in different scenarios and issuing alarm signals,meeting the application requirements of most scenarios.

关键词

越界行为 / 嵌入式系统 / 目标检测 / ByteTrack

Key words

cross-border behavior / embedded system / object detection / ByteTrack

引用本文

导出引用
杨森泉, 肖昌迪, 邱金宝, . 行人异常越界行为识别的嵌入式系统设计*[J]. 集成电路与嵌入式系统. 2023, 23(10): 74-76
Yang Senquan, Xiao Changdi, Qiu Jinbao, et al. Embedded System for Pedestrian Abnormal Crossing Behavior Detection[J]. Integrated Circuits and Embedded Systems. 2023, 23(10): 74-76
中图分类号: TP391   

参考文献

[1]
邱亮南. 红外线幕墙产品的技术特征与应用—主动红外入侵探测技术的发展历程[J]. 中国安防, 2009(Z1):46-49.
[2]
吴昊. 基于YOLOX和重识别的行人多目标跟踪方法[J]. 自动化与仪表, 2023, 38(3):59-62,67.
[3]
林强, 张淋均, 谢艾伶, 等. 不安全越界行为的个性化实时检测[J]. 计算机科学与探索, 2020, 14(6):1017-1027.
户外迷路甚至走失事件在老年人群体中多发频发,成为危及他们独立生活安全的突出问题之一。为防止老年人走离日常生活所在的安全区域,进而避免走失事件的发生,研究并提出基于个人出行轨迹的个性化安全地理围栏构建方法及面向越界行为发现的异常轨迹实时检测算法。首先,建模每个人的户外安全地理围栏为不规则多边形,其中顶点代表经常到访的物理位置,边代表连接物理位置之间的道路;其次,使用GPS轨迹实例化构建的安全地理围栏模型,包括相关区域的划分和轨迹的映射处理;再次,通过在传统点在多边形内部判定算法中融入异常轨迹跨越度的量化评价指标,提出不安全越界行为的个性化实时检测算法;最后,使用一组来自个人的GPS轨迹数据进行了实验验证。实验结果表明提出的方法在老年人边界越界行为的识别中是可行的,在所有数据集上获得的AUC值均高于0.995,该原型系统具有良好的响应时间和检测性能。
[4]
朱金连, 蒋海敏, 杨玉捷, 等. 基于改进YOLOv3的海关监管场所人员入侵检测算法[J]. 无线互联科技, 2022, 19(2):122-126.
[5]
焦广超. 基于轻量化模型的异常行为检测研究[D]. 济南: 山东大学, 2022.
[6]
吕婷. 基于视频的越界行为检测与识别研究[D]. 银川: 北方民族大学, 2016.
[7]
顾国强. 基于智能识别的人员密集场所安防预警系统[J]. 港口科技, 2019(8):19-23,44.
[8]
ZHANG Y, SUN P, JIANG Y, et al. ByteTrack:Multi-Object tracking by associating every detection box[J]. arXiv Preprint arXiv:2110.06864,2021.
[9]
吴静雯, 李小龙, 梁向阳. 基于YOLOv5与目标追踪算法的戴口罩人脸识别系统[J]. 现代信息科技, 2023, 7(6):61-64.

基金

* 韶关市2020年科技计划项目—智能视频监控系统中的目标检测与跟踪关键技术研究

编辑: 薛士然
PDF(1985 KB)

Accesses

Citation

Detail

段落导航
相关文章

/