针对当前电动汽车充电过程中电网侧以及用户侧的客观需要,设计了优化电动汽车有序充电的一种方法。以最小化电网侧负荷波动和用户侧最大限度地提高电动汽车的充电电量为目标函数,建立了电动汽车的时间维度调度模型。提出了基于改进的多目标粒子群优化算法,通过个体选择、正态分布自适应突变、模糊满意度决策等策略加快搜索效率以及跳出局部极值。实验结果表明,与MOGA和MOAFSA相比,IACO具有更高的搜索效率。
Abstract
Considering the objective needs of the grid side and user side in the current charging process of electric vehicles,a method for optimizing the orderly charging of electric vehicles has been designed.A time dimension scheduling model for electric vehicles is established with the objective function of minimizing load fluctuations on the grid side and maximizing the charging capacity of electric vehicles on the user side.An improved multi-objectiveparticle swarm optimization algorithm is proposed to speed up the search efficiency and jump out of the local extremum through individual selection,normal distribution adaptive mutation,fuzzy satisfaction decision and other strategies.The experiment results indicate that IACO has higher search efficiency compared to MOGA and MOAFSA.
关键词
电力系统 /
电动汽车 /
充电策略 /
蚁群优化
Key words
power system /
electric vehicles /
charging strategy /
ant colony optimization
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 尹宏旭,张玮,梁顺,等.计及电动汽车时空可调度特性的配电系统可靠性评估[J].电力需求侧管理,2023,25(2):82-88.
[2] 焦保华,陈勇.纯电动汽车驱动系统匹配优化与仿真分析[J].北京信息科技大学学报(自然科学版),2023,38(1):32-39.
[3] 刘祖明,李杰慧,孙建平,等.新型风光抽水蓄能系统研究[J].云南师范大学学报(自然科学版),2023,43(2):11-14.
[4] 陈辉,李艳,林思远.大数据驱动下全接触渠道的电力客户精准画像[J].云南师范大学学报(自然科学版),2023,43(2):34-38.
[5] 钟建栩,余少锋,廖崇阳,等.基于云计算的电力设备智能监测系统[J].云南师范大学学报(自然科学版),2022,42(3):37-41.
[6] 张超,武泽,许峰,等.基于改进聚类分析的电力数据智能分析与处理算法[J].电子设计工程,2023,31(1):138-142.
[7] 杨悦,潘刚,朱敬华.真实交通数据下的实时电动汽车智能充电策略[J].计算机与数字工程,2023,51(1):133-141,147.
[8] 李波,廖其龙.基于网格遗传算法的家用电动汽车有序充电策略[J].制造业自动化,2022,44(12):138-142.