摘要
针对量子模块存在功率大、计算能力差和传输通信效率低等问题,对量子模块低功率开发关键技术进行研究。采用梯度上升脉冲工程算法对量子门进行优化,通过迭代计算寻找最优脉冲序列,可提高量子模块的计算能力并降低功耗;利用量子纠缠反馈控制对量子传输通信进行优化,通过监测和对量子系统进行反馈,可增强通信的效率和减少功率消耗。实验结果表明,采用GRAPE算法后的CZ精度能达到96%;利用QEFC模型优化后的平均保真度在振幅阻尼的干扰下能达到0.97,在退极化信道下能达到0.92,远高于优化前;在空间等离子体环境下,优化后的误码率只有0.009,远低于优化前。由此可见,优化后的量子模块计算能力和传输效率能得到很大的提高,从而降低了功率的消耗。
Abstract
In view of the problems of high power,low computing power and low transmission and communication efficiency of quantum modules,the key technologies of low-power development of quantum modules are studied.The Gradient Ascent Pulse Engineering (GRAPE) algorithm is used to optimize the quantum gate,and the optimal pulse sequence is found through iterative calculation,which can improve the computing power and reduce the power consumption of the quantum module.Quantum Entanglement Feedback Control (QEFC) is used to optimize the quantum transmission communication,which can enhance the efficiency of communication and reduce the power consumption by monitoring and feeding back the quantum system.The experiment results show that the CZ accuracy of GRAPE algorithm can reach 96%.The average fidelity of the optimized QEFC model can reach 0.97 under amplitude damping interference and 0.92 under depolarization channel,which is much higher than before optimization.In the space plasma environment,the bit error rate after optimization is only 0.009,which is much lower than that before optimization.It can be seen that the computing power and transmission efficiency of the optimized quantum module can be greatly improved,thus reducing the power consumption.
关键词
量子模块 /
GRAPE算法 /
QEFC模型
Key words
quantum module /
GRAPE algorithm /
QEFC model
徐旭.
量子模块的低功率开发关键技术研究[J]. 集成电路与嵌入式系统. 2023, 23(12): 40-43
Xu Xu.
Research on Key Technology of Low-power Development of Quantum Module[J]. Integrated Circuits and Embedded Systems. 2023, 23(12): 40-43
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李雅.基于冷原子系综量子存储器性能优化的实验研究[D].太原:山西大学,2022.
[2] 窦通.基于量子—经典混合架构的卷积神经网络优化研究[D].广州:华南理工大学,2022.
[3] 王晓晗.非线性混沌网络系统的分散性能量子优化算法[J].吉林大学学报(信息科学版),2022,40(3):424-430.
[4] 张秀再,吴悦维,周丽娟,等.水溶性气溶胶对自由空间量子通信性能影响[J].高技术通讯,2023,33(3):292-297.
[5] 吴希.Grover量子搜索算法的线路优化及模拟平台的构建[D].扬州:扬州大学,2022.
[6] 郑星舟,罗明星.基于量子测量的量子计算模型综述[J].重庆邮电大学学报(自然科学版),2023,35(3):405-416.
[7] 孙振海.基于超导量子比特的最优化调控[D].杭州:浙江大学,2021.
[8] 蔚栋敏.基于进化算法实现多比特里德堡量子逻辑门的优化设计[D].上海:华东师范大学,2022.
[9] 聂敏,张彦朋,杨光,等.基于纠缠反馈控制的量子卫星通信性能优化策略[J].激光与光电子学进展,2021,58(5):272-279.
[10] 张彦朋.量子加密卫星通信星地链路抗干扰研究[D].西安:西安邮电大学,2021.