基于正则项的能谱CT投影分解方法研究*

李佳欣, 孔慧华, 齐子文, 邸云霞

集成电路与嵌入式系统 ›› 2023, Vol. 23 ›› Issue (12) : 44-48.

PDF(2530 KB)
PDF(2530 KB)
集成电路与嵌入式系统 ›› 2023, Vol. 23 ›› Issue (12) : 44-48.
技术纵横

基于正则项的能谱CT投影分解方法研究*

  • 李佳欣1,2, 孔慧华1,2, 齐子文2, 邸云霞2
作者信息 +

Research on Projection Decomposition Method of Spectral CT Based on Regularization

  • Li Jiaxin1,2, Kong Huihua1,2, Qi Ziwen2, Di Yunxia2
Author information +
文章历史 +

摘要

能谱CT通过探索不同X射线能量下衰减特性的差异,具有定量分析材料的能力。然而,利用光子计数探测器获得的多个投影数据在进行材料分解的过程中,会受到噪声放大的影响。本文在特定材料正则项的基础上,加入张量分解的正则项,用于降低噪声,提高分解效果。实验结果表明,本文提出的算法可以清楚地分解出不同材料的投影图,利用重建算法对材料投影图进行层析重建后,材料图像的边缘结构比较清晰,并且抑制了分解过程中的噪声,提高了图像质量。

Abstract

Spectral CT has the ability to quantitative analysis materials by exploring the differences of attenuation characteristics under different X-ray energy.However,during the process of multiple projection data obtained by photon-counting detectors for material decomposition,it will be affected by noise amplification.In this paper,on the basis of the regular term of specific materials,the regular term of tensor decomposition is added to reduce noise and improve the decomposition effect.The experiment results show that the algorithm proposed can clearly decompose the projection diagram of different materials.After using the reconstruction algorithm to perform tomographic reconstruction on the material projection images,the edge structure of the reconstructed material image is relatively clear,and the noise in the decomposition process is suppressed,and the image quality is improved.

关键词

能谱CT / 正则项 / 材料分解 / 投影分解

Key words

spectral CT / regularization / material decomposition / projection decomposition

引用本文

导出引用
李佳欣, 孔慧华, 齐子文, 邸云霞. 基于正则项的能谱CT投影分解方法研究*[J]. 集成电路与嵌入式系统. 2023, 23(12): 44-48
Li Jiaxin, Kong Huihua, Qi Ziwen, Di Yunxia. Research on Projection Decomposition Method of Spectral CT Based on Regularization[J]. Integrated Circuits and Embedded Systems. 2023, 23(12): 44-48
中图分类号: TP391.41   

参考文献

[1] Cong W X,De M B,Wang G.Projection decomposition via univariate optimization for dual-energy CT[J].Journal of X-ray Science and Technology,2022,30(4):725-736.
[2] 任恕慧,张鹏程,李昆鹏,等.基于注意力机制的双域CT重建算法[J].国外电子测量技术,2022,41(10):62-71.
[3] 史韶杰,韩建宁,李大威,等.基于多尺度曝光融合的医学CT图像增强方法[J].电子测量技术,2022,45(6):106-111.
[4] Su T,Kaftandjian V,Duvauchelle P,et al.A spectral X-ray CT simulation study for quantitative determination of iron[J].Nuclear Instruments and Methods in Physics Research,2018,894(21):39-46.
[5] Rodesch P A,Richtsmeier D,Guliyev E,et al.Comparison of threshold energy calibrations of a photon-counting detector and impact on CT reconstruction[J].IEEE Transactions on Radiation and Plasma Medical Sciences,2023,7(3):263-272.
[6] Shi Z F,Li H L,Cao Q J,et al.A material decomposition method for dual-energy CT via dual interactive Wasserstein generative adversarial networks[J].Medical Physics,2021,48(6):2891-2905.
[7] Wu X C,He P,Long Z R,et al.Multi-material decomposition of spectral CT images via Fully convolutional DenseNets[J].Journal of X-Ray Science and Technology,2019,27(3):461-471.
[8] Andriiashen V,Kozhevnikov D.Development of the projection-based material decomposition algorithm for multi-energy CT[J].IEEE Transactions on Radiation and Plasma Medical Sciences,2021,5(4):517-527.
[9] Ducros N,Abascal J F P,Sixou B,et al.Regularization of nonlinear decomposition of spectral X-ray projection images[J].Medical Physics,2017,44(9):E174-E187.
[10] Korbinian M,Thorsten S,Sebastian E,et al.Spectral angiography material decomposition using an empirical forward model and a dictionary-based regularization[J].IEEE Transactions on Medical Imaging,2018,37(10):2298-2309.
[11] Wang S Y,Ailong C,Wu W W,et al.IMD-MTFC:Image-domain material decomposition via material-image tensor factorization and clustering for spectral CT[J].IEEE Transactions on Radiation and Plasma Medical Sciences,2023,7(4):382-393.
[12] Kong H H,Liu R,Yu H Y.Ordered-subset split-bregman algorithm for interior tomography[J].Journal of X-ray Science and Technology,2016,24(2):221-240.
[13] Yang Y N.On global convergence of alternating least squares for tensor approximation[J].Computational Optimization and Applications,2023,84(2):509-529.
[14] Chen W,Du L G,Zhao J,et al.A Gauss-Newton inversion method based on prior back-projection information for inverse scattering problems[J].Microwave and Optical Technology Letters,2022,64(4):627-632.
[15] 孙英博,孔慧华,张雁霞.基于投影域分解的多能谱CT造影剂物质识别研究[J].中北大学学报(自然科学版),2019,40(2):167-172.
[16] Zhao H W,Wang Z,Liu P P,et al.The normalized distance preserving binary codes and distance table[J].Journal of Information Science and Engineering,2017,33(2):499-515.
[17] Bengtsson A,Hill D,Shortiss K,et al.Comparison of contrast-to-noise ratios of different detection methods in ultrasound optical tomography[J].Optica Publishing Group,2022,13(9):4834-4850.

基金

*国家自然科学基金项目(62201520,62103384,62122070);山西省基础研究计划(202103021224190)

PDF(2530 KB)

Accesses

Citation

Detail

段落导航
相关文章

/