由于半导体工艺的限制,图像传感器列并行读出电路的系统结构很容易出现列与列之间的失配,从而导致输出图像在垂直方向亮度不均匀,表现为明暗变化的竖条纹,即FPN噪声,其严重影响了图像质量。本设计基于矩匹配法对其进行改进,提出了一种针对图像传感器的FPN噪声去除算法。首先在系统上电时,让图像传感器采集随机不同的300帧图像,然后算出所有图像的列像素均值和累计像素均值,当前列均值减累计像素均值即为该图像传感器当前列的校正值。本设计以Zynq系列ARM+FPGA异构SoC作为实现平台,OV6946作为图像传感器,使用Vivado HLS进行输入/输出接口都为AXI-Stream的视频流处理算法IP的开发,并固化到Zynq的FPGA中。经过实验,本算法在Zynq7020平台、50 MHz的系统时钟下,处理OV6946摄像头输出的400×400@30 f/s视频流延时约为3.3 ms,保证了视频流输出的实时性,较好地实现了FPN噪声的去除效果,并且算法的应用具有普适性。
Abstract
Due to the limitations of semiconductor technology,the system structure of image sensor column parallel readout circuits is prone to column to column mismatch due to process deviations,resulting in uneven brightness of the output image in the vertical direction,manifested as vertical stripes with varying brightness,which is also known as FPN noise.FPN noise seriously affects image quality.This design is based on the moment matching method and improves it,proposing an FPN noise removal algorithm for image sensors.Firstly,when the system is powered on,let the image sensor collect 300 randomly different frames of images,and then calculate the column pixel mean and cumulative pixel mean of all images.The current column mean minus the cumulative pixel mean is the correction value of the current column of the image sensor.This design uses Zynq series ARM+FPGA heterogeneous SoC as the implementation platform,OV6946 as the image sensor,and Vivado HLS for the development of video stream processing algorithm IP with AXI-Stream input and output interfaces,which is solidified into Zynq's FPGA.After experiments,this algorithm processes 400×400@30 fps outputs from the OV6946 camera on the Zynq7020 platform with a 50 MHz system clock.The video streaming time is about 3.3 ms,ensuring the real-time output of the video stream.The removal effect of FPN noise has been well achieved,and the application of the algorithm is universal.
关键词
图像降噪 /
Vivado HLS /
嵌入式图像处理 /
OV6946
Key words
image denoising /
Vivado HLS /
embedded image processing /
OV6946
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 孙超.基于嵌入式系统的实时成像处理研究[D].西安:西安电子科技大学,2017.
[2] 王云峰,范正吉,何鑫,等.基于Vivado HLS的内窥镜实时暗部增强算法设计[J].电子测量技术,2022,45(23):31-37.
[3] 张壮.基于HLS的智能相机图像处理底层IP核设计与实现[D].南京:南京邮电大学,2020.
[4] 张妮娜,窦衡.并行化改进遗传算法的FPGA高速实现方法[J].太赫兹科学与电子信息学报,2012,10(1):107-109.
[5] F L Gadallah,F Csillag,E J M Smith.Destriping multisensor imagery with moment matching[J].International Journal of Remote Sensing,2000,21(12):2505-2511.
[6] 刘正军,王长耀,王成.成像光谱仪图像条带噪声去除的改进矩匹配方法[J].遥感学报,2002,6(4):279-284.
[7] Sun L,Neville R,Staenz K,et al.Automatic destriping of Hyperion imagery based on spectral moment matching[J].Canadian Journal of Remote Sensing,2014,34(sup1):S68-S81.
[8] 郑逢斌,支晶晶,高海亮,等.一种高光谱图像条带噪声去除改进算法[J].计算机科学,2010,37(5):265-267.
[9] 胡宝鹏,周则明,孟勇,等.基于矩匹配和变分法的MODIS条带去除模型[J].红外,2014,35(11):28-36.
[10] 苏俊杰,周春平,李月,等.基于改进矩匹配算法的珠海一号高光谱卫星影像相对辐射校正[J].测绘与空间地理信息,2021,44(10):98-101.
[11] 贺理,赵鹤鸣,邵雷.AXI4-Stream总线的FPGA视频系统的开发研究[J].单片机与嵌入式系统应用,2015,15(12):42-45.
[12] Sharafeddin M,Saghir M A R,Akkary H H,et al.On the effectiveness of accelerating MapReduce functions using the Xilinx Vivado HLS tool[J].International Journal of High Performance Systems Architecture,2016.
[13] 周彦臻,吴瑞东,于潇,等.面向FPGA部署的CNN-SVM算法研究与实现[J].电子测量与仪器学报,2021,35(4):90-98.
[14] 张艳辉,郭洺宇,何宾.Vivado HLS嵌入式实时图像处理系统的构建与实现[J].电子技术应用,2016,42(9):115-121.
[15] 杨博,楚要钦,景德胜,等.基于AXI4总线的SoC中离散量信号控制IP核的设计与验证[J].信息通信,2020,207(3):95-97.
基金
*国家自然科学基金青年科学基金(51705475)