改进型MTBFT模型的电子设备可靠性评估方法

魏江英, 董义俊, 刘振祥

集成电路与嵌入式系统 ›› 2023, Vol. 23 ›› Issue (12) : 63-66.

PDF(1361 KB)
PDF(1361 KB)
集成电路与嵌入式系统 ›› 2023, Vol. 23 ›› Issue (12) : 63-66.
新器件新技术

改进型MTBFT模型的电子设备可靠性评估方法

  • 魏江英1, 董义俊1, 刘振祥2
作者信息 +

An Improved MTBF-T Model for Reliability Evaluation of Electronic Equipment

  • Wei Jiangying1, Dong Yijun1, Liu Zhenxiang2
Author information +
文章历史 +

摘要

针对相关电子设备在运行中故障率不确定导致可靠度难以识别的问题,本研究设计了一个改进型的电子设备可靠性评估系统。利用平均无故障运行时间模型对电力设备的时间特征进行监测,采用最小二乘拟合设备的MTBF-T曲线,通过对设备可靠性发展趋势分析推测设备的运行寿命和故障发生概率。利用AMSAA技术对MTBF-T模型进行融合,获取该设备处于整个周期的相应阶段。采取长短期记忆网络算法提高本研究模型对电子设备故障的判别与预测的正确度。试验结果表明,通过本算法进行数据质量核查的准确度高达90%以上,表明该系统对提升故障判别准确度具有较强的实用性。

Abstract

For the problem that the failure rate of related electronic equipment in operation is uncertain,resulting in difficult to identify the reliability.In this paper,an improved reliability evaluation system for electronic equipment is designed.The Mean Time Between Failure (MTBF-T) model is used to monitor the time characteristics of the power equipment,and the MTBF-T curve of the equipment is fitted by least squares.The operating life and failure probability of the equipment are predicted by analyzing the reliability development trend of the equipment.The MTBF-T model is fused with AMSAA technology to obtain the corresponding stage of the whole cycle of the equipment.The Long Short Term Memory (LSTM) algorithm is adopted to improve the accuracy of the model's identification and prediction of electronic equipment faults.The experiment results show that the accuracy of data quality verification by this algorithm is more than 90%,which indicates that the research system has strong practicability to solve the problem of improving the accuracy of fault discrimination.

关键词

MTBF-T技术 / AMSAA技术 / LSTM算法 / 故障检测

Key words

MTBF-T technology / AMSAA technology / LSTM algorithm / fault detection

引用本文

导出引用
魏江英, 董义俊, 刘振祥. 改进型MTBFT模型的电子设备可靠性评估方法[J]. 集成电路与嵌入式系统. 2023, 23(12): 63-66
Wei Jiangying, Dong Yijun, Liu Zhenxiang. An Improved MTBF-T Model for Reliability Evaluation of Electronic Equipment[J]. Integrated Circuits and Embedded Systems. 2023, 23(12): 63-66
中图分类号: TP391   

参考文献

[1] 薛光明,宁鹏,钱明军,等.基于指数分布的车辆行驶试验MTBF估计方法分析[J].机械设计与研究,2022,38(2):169-173.
[2] 熊律,王红.以可靠度为中心的动车组设备预防性维修策略[J].铁道科学与工程学报,2021,18(3):751-757.
[3] 王庆锋,刘家赫,柳建军,等.炼化企业设备的本质安全可靠与监管智能化对策研究[J].中国工程科学,2019,21(6):129-136.
[4] 白玮,王成,王彩玲,等.基于蚁群数量动态调整的改进蚁群优化算法[J].计算机应用,2023,43(S1):163-168.
[5] 陈法法,杨蕴鹏,汤宝平,等.组合核RVM与EEMD信息熵的机械设备可靠度评估与预测[J].工程科学与技术,2019,51(5):149-156.
[6] 张欣,岳鑫隆,方东红.高校仪器设备全生命周期管理机制探析与信息化建设[J].实验室研究与探索,2021,40(1):262-265.
[7] 于振中,洪辉武,徐斌,等.基于多粒度联合孤立森林的机器人实时异常监控方法[J].计算机应用研究,2021,38(6):1785-1789.
[8] 姜广坤,杨琳.分布式网络异常攻击有限状态智能监控仿真[J].计算机仿真,2019,36(4):256-259,264.
[9] 单显明,李长伟,张忠传.基于神经网络的复杂电子设备故障诊断系统的设计[J].电子测量技术,2022,45(11):52-56.

PDF(1361 KB)

Accesses

Citation

Detail

段落导航
相关文章

/