UWB技术的RLSEKF室内定位算法研究

张泽鹏, 李桂林, 周海俊, 李雯

集成电路与嵌入式系统 ›› 2023, Vol. 23 ›› Issue (2) : 70-72.

PDF(1057 KB)
PDF(1057 KB)
集成电路与嵌入式系统 ›› 2023, Vol. 23 ›› Issue (2) : 70-72.
新器件新技术

UWB技术的RLSEKF室内定位算法研究

  • 张泽鹏, 李桂林, 周海俊, 李雯
作者信息 +

Research on Indoor Location Algorithm of RLSEKF Based on UWB

  • Zhang Zepeng, Li Guilin, Zhou Haijun, Li Wen
Author information +
文章历史 +

摘要

针对当前UWB技术在传统厂区布站方式下室内定位误差较大,无法良好实现对象的三维显示问题,基于多传感器融合,本文提出一种将UWB数据与IMU数据进行先预处理、后融合的算法。该方法通过TOF测距后将UWB数据进行小波阈值去噪,递推最小二乘定位,并与IMU数据进行扩展卡尔曼滤波融合,从而减小标签的三维距离误差,提高定位精度,实现对厂区可移动设备的实时监控管理。仿真结果表明,基于多传感器融合的RLS-EKF室内定位能够减小标签三维定位误差,提高定位的准确性,满足厂区室内实时定位的精度要求。

Abstract

In view of the current UWB technology in the traditional plant layout mode indoor positioning error is large,can not achieve a good three-dimensional display of objects,an algorithm based on multi-sensor fusion is proposed,which preprocesses UWB data and IMU data before fusion.In this method,after the TOF ranging,the UWB data is denoised by wavelet threshold,and the recursive least squares localization is performed,and the extended Kalman filter is fused with the IMU data.In this way,the three-dimensional distance error of the label can be reduced,and the positioning accuracy can be improved,so as to achieve the purpose of real-time monitoring and management of the movable equipment in the factory.The simulation results show that the RLS-EKF indoor positioning based on multi-sensor fusion can reduce the three-dimensional positioning error of tags,improve the accuracy of positioning,and meet the accuracy requirements of indoor real-time positioning.

关键词

UWB / IMU / 小波阈值去噪 / 递推最小二乘 / 扩展卡尔曼滤波

Key words

UWB / IMU / wavelet threshold denoising / recursive least squares / extended Kalman filter

引用本文

导出引用
张泽鹏, 李桂林, 周海俊, 李雯. UWB技术的RLSEKF室内定位算法研究[J]. 集成电路与嵌入式系统. 2023, 23(2): 70-72
Zhang Zepeng, Li Guilin, Zhou Haijun, Li Wen. Research on Indoor Location Algorithm of RLSEKF Based on UWB[J]. Integrated Circuits and Embedded Systems. 2023, 23(2): 70-72
中图分类号: TN925   

参考文献

[1] 张忠超,高同跃,丁昭,等.基于UWB与IMU的多传感器融合室内定位技术研究[J].工业控制计算机,2022,35(4):45-48.
[2] 周军,魏国亮,田昕,等.融合UWB和IMU数据的新型室内定位算法[J].小型微型计算机系统,2021,42(8):1741-1746.
[3] 钟亮,李晓东.基于UWB的自适应小波与卡尔曼滤波定位算法[J].电子测量技术,2020,43(22):165-169.
[4] 张健铭,施元昊,徐正蓺,等.基于误差预测的自适应UWB/PDR融合定位算法[J].计算机应用,2020,40(6):1755-1762.
[5] 张少辉,亓玉浩,翟方文,等.基于冗余距离筛选的UWB定位优化方法[J].清华大学学报(自然科学版),2022,62(5):934-942.
[6] Yong Yin,Nenghai Yu,Weijie Dong.A research of UWB rake receiver based on novel RLS adaptive algorithm[J].Journal of Electronics (China),2006,23(3).
[7] Alessandro Benini,Adriano Mancini,Sauro Longhi.An IMU/UWB/Vision-based Extended Kalman Filter for Mini-UAV Localization in Indoor Environment using 802.15.4a Wireless Sensor Network[J].Journal of Intelligent&Robotic Systems,2013,70(1-4).

PDF(1057 KB)

Accesses

Citation

Detail

段落导航
相关文章

/