基于LightGBM-Stacking模型融合的多传感器甲烷检测系统*

刘小飞, 陈向东, 丁星, 周龙

集成电路与嵌入式系统 ›› 2023, Vol. 23 ›› Issue (6) : 65-69.

PDF(1421 KB)
PDF(1421 KB)
集成电路与嵌入式系统 ›› 2023, Vol. 23 ›› Issue (6) : 65-69.
新器件新技术

基于LightGBM-Stacking模型融合的多传感器甲烷检测系统*

  • 刘小飞, 陈向东, 丁星, 周龙
作者信息 +

Multi-sensor Methane Detection System Based on LightGBM-Stacking Model Fusion

  • Liu Xiaofei, Chen Xiangdong, Ding Xing, Zhou Long
Author information +
文章历史 +

摘要

利用多传感器检测技术结合集成学习方法,设计了一种基于LightGBM-Stacking模型融合的多传感器甲烷检测系统,其中分别使用恒压供电式催化燃烧型传感器、两路脉冲供电式催化燃烧型传感器和热传导型传感器相结合的方式达到全范围检测的目的。实验结果表明,相比使用单一算法模型,本文所提出的LightGBM-Stacking集成模型在甲烷预测的准确率、均方根误差及决定系数等指标上均有更好的表现。

Abstract

In the paper,a multi-sensor methane detection system based on LightGBM-Stacking module fusion is designed using multi-sensor detection technology combined with integrated learning method.The combination of constant voltage powered catalytic combustion type sensors,two pulse powered catalytic combustion type sensors,and heat conduction type sensors is used to achieve the purpose of full range detection.The experiment results show that the LightGBM-Stacking integrated model proposed in the paper has better performance in methane prediction accuracy,root-mean-square error and determination coefficient than the single algorithm model.

关键词

STM32F103R8T6 / Stacking集成学习 / 机器学习 / 甲烷预测

Key words

STM32F103R8T6 / stacking integrated learning / machine learning / methane prediction

引用本文

导出引用
刘小飞, 陈向东, 丁星, 周龙. 基于LightGBM-Stacking模型融合的多传感器甲烷检测系统*[J]. 集成电路与嵌入式系统. 2023, 23(6): 65-69
Liu Xiaofei, Chen Xiangdong, Ding Xing, Zhou Long. Multi-sensor Methane Detection System Based on LightGBM-Stacking Model Fusion[J]. Integrated Circuits and Embedded Systems. 2023, 23(6): 65-69
中图分类号: TP181    TP212.9   

参考文献

[1] 姜志环.气体钻井工程实时监测及安全分析系统研究[D].青岛:中国石油大学(华东),2008.
[2] 张林伟.气体钻井井下燃爆分析[J].西南石油大学学报(自然科学版),2012,34(5):146-152.
[3] 邓霖.空气钻井岩屑返出量实时监测技术的研究[D].青岛:中国石油大学(华东),2018.
[4] 付华,刘汀,张胜强,等.基于改进ABC-GRNN模型的煤矿瓦斯浓度预测研究[J].控制工程,2017,24(4):881-887.
[5] Mary Lou Padgett.Neural networks and simulation: Modeling for applications[J].Simulation,1992,58(5).
[6] 朱晓晨,尹奇志,赵福芹,等.基于LightGBM的船舶航速预测模型研究[J].大连海事大学学报,2023(2):1-9.
[7] 刘文鹏,陈向东,吴宇尘.基于脉冲供电的催化燃烧式气体传感系统[J].信息技术,2020,44(8):1-6,11.
[8] 王飞,黄涛,杨晔.基于Stacking多模型融合的IGBT器件寿命的机器学习预测算法研究[J].计算机科学,2022,49(S1):784-789.
[9] 崔逊航.基于改进LightGBM的风力发电机组叶片故障预测算法研究[D].重庆:重庆邮电大学,2021.
[10] Lorenzo Gigoni,Alessandro Betti,Mauro Tucci,et al.A Scalable Predictive Maintenance Model for Detecting Wind Turbine Component Failures Based on SCADA Data[J].CoRR,2019,abs/1910.09808.
[11] Tianqi Chen,Carlos Guestrin.XGBoost:A Scalable Tree Boosting System[J].CoRR,2016,abs/1603.02754.
[12] 王晓晖,张亮,李俊清,等.基于遗传算法与随机森林的XGBoost改进方法研究[J].计算机科学,2020,47(S2):454-458,463.
[13] 郑胜洁,徐余明,胡祖翰,等.基于随机森林的城市轨道交通桥梁故障预测模型[J].北京交通大学学报,2022,46(5):9-18.
[14] 韩金鹏,李冬梅,王嵩.基于PSO_RF双向特征选择和LightGBM设备故障检测[J].计算机系统应用,2020,29(7):228-232.
[15] 韩金鹏.基于随机森林和LightGBM设备故障检测方法的设计与实现[D].沈阳:中国科学院大学(中国科学院沈阳计算技术研究所),2020.
[16] 史业照,郭斌,郑永军.基于LSTM网络的IGBT寿命预测研究[J].中国测试,2022(12):1-6.
[17] 吴宇尘,陈向东,丁星,等.基于长短时记忆神经网络硬件加速的燃爆状态监测应用[J].物联网技术,2021,11(10):4-9,12.

基金

*国家自然科学基金重点资助项目(61731016);中央高校基本科研费资助项目(26822022ZTPY001)。

PDF(1421 KB)

Accesses

Citation

Detail

段落导航
相关文章

/