基于物联网的电动汽车电池管理智能解决方案*

费维科, 刘振华

集成电路与嵌入式系统 ›› 2023, Vol. 23 ›› Issue (6) : 70-73.

PDF(1357 KB)
PDF(1357 KB)
集成电路与嵌入式系统 ›› 2023, Vol. 23 ›› Issue (6) : 70-73.
应用精选

基于物联网的电动汽车电池管理智能解决方案*

  • 费维科, 刘振华
作者信息 +

Intelligent Solution for Battery Management of Electric Vehicles Based on Internet of Things

  • Fei Weike, Liu Zhenhua
Author information +
文章历史 +

摘要

提出了一种基于感知层、网络层和应用层三层架构的物联网电动汽车锂电池组高精度管理智能解决方案。该方案采用BMS智能物联系统和Thevenin电池智慧管理模型,实现对单体电池组电压、电流实时采样和电压均衡控制,同时通过ESAM电池模块、手持终端PSAM模块测量电池组充放电电流,实现对BMS电池信息采集与处理、CAN电池信息传递与汇总及EVT电池信息识别与监测。通过搭建MATLAB/Simulink仿真实验平台,模拟测试24串磷酸铁锂电池组运行工况,电池荷电状态估算值误差精度在±5%内,从而验证了本文解决方案的可靠性与电池模型、估测算法的精准性。

Abstract

An intelligent solution for high-precision management of lithium-ion battery pack in electric vehicles based on the three-layer architecture of perception layer,network layer and application layer is proposed.The scheme adopts BMS intelligent Internet of Things system and Thevenin battery intelligent management model to realize real-time sampling and voltage balance control of single battery pack voltage and current.At the same time,the charging and discharging current of battery pack is measured through ESAM battery module and handheld terminal PSAM module to realize the collection and processing of BMS battery information,the transmission and summary of CAN battery information,and the identification and monitoring of EVT battery information.By building a MATLAB/Simulink simulation experiment platform,simulating the operating conditions of 24 series of lithium iron phosphate battery packs,the error of the estimated battery state of charge is within ± 5%,which confirms the reliability of the intelligent solution for battery management of electric vehicles based on the Internet of Things and the accuracy of the battery model and estimation algorithm.

关键词

IoT / BMS智能物联 / Thevenin电池模型 / 隔离森林算法

Key words

IoT / BMS intelligent Internet of Things / Thevenin battery model / isolated forest algorithm

引用本文

导出引用
费维科, 刘振华. 基于物联网的电动汽车电池管理智能解决方案*[J]. 集成电路与嵌入式系统. 2023, 23(6): 70-73
Fei Weike, Liu Zhenhua. Intelligent Solution for Battery Management of Electric Vehicles Based on Internet of Things[J]. Integrated Circuits and Embedded Systems. 2023, 23(6): 70-73
中图分类号: U462   

参考文献

[1] 王丽君,颜佳,韩涛,等.车联网协作通信移动接入点选择算法[J].华中科技大学学报,2019,47(6):41-45,68.
[2] 陈卓,李二海.基于物联网的电动汽车电池BMS系统自动测试研究[J].自动化与仪器仪表,2022(10):85-89.
[3] 陈天英,侯仰军,栗会峰,等.基于DSP的电动汽车电池管理系统建立及SOC精准估计[J].河北电力技术,2020,39(5):9-12,58.
[4] 杨小兵,耿大伟,孙伟.纯电动汽车电池热管理关键技术集成开发[C]//第十七届河南省汽车工程科技学术研讨会论文集,2020:355-357.
[5] 田晟,裴锋,李拾成.纯电动汽车上下电及电池管理系统故障控制策略[J].华南理工大学学报,2016,44(9):107-115.
[6] 朱春波.电动汽车电池管理系统关键核心技术的研究与应用[D].哈尔滨:哈尔滨工业大学,2015.
[7] 乔旭彤,耿海洲,董峰.集中式电动汽车电池管理系统设计[J].电子测量与仪器学报,2015,29(7):1019-1027.
[8] 朱京蓥,姜帆,王凤弟.基于ESAM安全模块的电动汽车电池管理系统[J].电子技术应用,2015,41(3):151-153.
[9] 宋德鹏,万晓凤.CAN总线在纯电动汽车整车控制及电池管理系统中的应用[C]//Proceedings of the 2011 Second ETP/IITA Conference on Telecommunication and Information,2011:328-331.

基金

*中华职业教育社《5G与人工智能、工业互联网、智能人才培养体系研究与实践》子课题《智能家居及物联网人才技能培养体系研究与实践》(ZJS20200835)。

PDF(1357 KB)

Accesses

Citation

Detail

段落导航
相关文章

/