人脸遮挡识别技术在智能备件柜身份认证中的应用*

杨文勇, 韩帅, 张楠, 庞乐乐

集成电路与嵌入式系统 ›› 2023, Vol. 23 ›› Issue (6) : 74-77.

PDF(2124 KB)
PDF(2124 KB)
集成电路与嵌入式系统 ›› 2023, Vol. 23 ›› Issue (6) : 74-77.
应用精选

人脸遮挡识别技术在智能备件柜身份认证中的应用*

  • 杨文勇, 韩帅, 张楠, 庞乐乐
作者信息 +

Application of Occluded Face Recognition Technology in Identity Security Authentication of Intelligent Spare Parts Cabinet

  • Yang Wenyong, Han Shuai, Zhang Nan, Pang Lele
Author information +
文章历史 +

摘要

研究人脸遮挡识别技术在智能备件柜身份安全认证中的应用,以提高智能备件柜的安全性。依据人脸肤色以及形状特征定位人脸位置并对图像进行灰度归一化处理,采用稀疏编码方法将遮挡人脸图像的局部特征转变为特征向量,运用支持向量机构建遮挡人脸图像分类器,根据输出结果判断实时采集的人脸与数据库人脸图像是否匹配,实现智能备件柜的身份安全认证。实验结果表明,该方法能够准确识别遮挡人脸完成身份安全认证,人脸识别的误识率低,识别速度快,可保障智能备件柜安全。

Abstract

In the paper,the application of occlusion face recognition technology in the identity security authentication of the intelligent spare parts cabinet will be studied to improve the security of the intelligent spare parts cabinet.Locate the face position according to the skin color and shape features of the face and normalize the gray level of the image.Use the sparse coding method to convert the local features of the occluded face image into feature vectors.Use the support vector mechanism to build the occluded face image classifier.Judge whether the real-time collected face matches the face image in the database according to the output results,so as to achieve the identity security authentication of the intelligent spare parts cabinet.The experiment results show that this method can accurately identify the occluded face to complete the identity security authentication.The face recognition has low error rate and fast recognition speed,which can ensure the security of the intelligent spare parts cabinet.

关键词

遮挡人脸图像 / 人脸识别技术 / 局部特征提取

Key words

occluded face image / face recognition technology / local feature extraction

引用本文

导出引用
杨文勇, 韩帅, 张楠, 庞乐乐. 人脸遮挡识别技术在智能备件柜身份认证中的应用*[J]. 集成电路与嵌入式系统. 2023, 23(6): 74-77
Yang Wenyong, Han Shuai, Zhang Nan, Pang Lele. Application of Occluded Face Recognition Technology in Identity Security Authentication of Intelligent Spare Parts Cabinet[J]. Integrated Circuits and Embedded Systems. 2023, 23(6): 74-77
中图分类号: TP391.41   

参考文献

[1] 陆要要,袁家斌,何珊,等.基于超分辨率重建的低质量视频人脸识别方法[J].计算机科学,2021,48(S2):295-302.
[2] 杨柳,陈丽敏,易玉根.基于自适应加权子模式判别邻域投影的人脸识别方法[J].计算机科学,2019,46(10):307-310.
[3] 厍向阳,刘巧,叶鸥.融合LeNet-5和Siamese神经网络模型的人脸认证算法研究[J].计算机工程与应用,2020,56(15):215-220.
[4] 陈放,刘晓瑞,杨明业.基于活体检测和身份认证的人脸识别安防系统[J].计算机应用,2020,40(12):3666-3672.
[5] 周扬,熊俊俏.基于Wi-Fi和人脸识别技术的智能锁系统设计[J].电子技术应用,2021,47(6):57-61.
[6] 吴杰,段锦,董锁芹,等.DFM-GAN网络在跨年龄模拟的人脸识别技术研究[J].计算机工程与应用,2021,57(10):117-124.
[7] 杨德胜,秦浩,范叶平,等.基于人脸识别的综合性人员安全管控平台研究[J].微型电脑应用,2020,36(6):28-32.

基金

*国网张家口供电公司科技项目—人脸识别技术在智能备品备件柜的开发与应用(F2022Z710200236)。

PDF(2124 KB)

Accesses

Citation

Detail

段落导航
相关文章

/