Cortex-A57的轻量级人脸检测算法研究*

马旺健, 陈小平

集成电路与嵌入式系统 ›› 2023, Vol. 23 ›› Issue (8) : 35-38.

PDF(1489 KB)
PDF(1489 KB)
集成电路与嵌入式系统 ›› 2023, Vol. 23 ›› Issue (8) : 35-38.
技术纵横

Cortex-A57的轻量级人脸检测算法研究*

  • 马旺健, 陈小平
作者信息 +

Research on Lightweight Face Detection Algorithm Based on Cortex-A57

  • Ma Wangjian, Chen Xiaoping
Author information +
文章历史 +

摘要

针对高性能人脸检测模型参数量大、计算复杂度高,难以在嵌入式设备进行边缘部署的问题,对RetinaFace模型进行轻量化改进,提出一种轻量级人脸检测算法。采用MobileNetV2_0.5×作为特征提取骨干,应用轻量的PANLite对多尺度特征进行双向融合,增强特征表征能力。采用RFBLite实现特征增强,在增大特征感受野的同时合并上下文信息。使用滤波器剪枝算法对训练后的模型进行剪枝处理,再次训练微调网络参数后部署到嵌入式端Nvidia Jetson Nano进行模型推理。实验结果表明,该轻量级模型能够以较少的参数量和较低的计算复杂度实现较高的人脸检测性能,且能在嵌入式平台上进行实时推理。

Abstract

Aiming at the problem that the high-performance face detection model has a large number of parameters,high computational complexity,and it is difficult to deploy on the edge of embedded devices,a lightweight face detection algorithm is proposed,which is based on the lightweight improvement on RetinaFace.Firstly,MobileNetV2_0.5× is used as the backbone to extract features,and PANLite with few parameters is selected for two-way fusion of multi-scale features to enhance the ability of feature representation.RFBLite is used as the feature enhancement module to incorporate context information while increasing the feature receptive field.Finally,filter pruning algorithm is applied in the trained model.Then the pruned model is retrained for fine-tuning and depolyed to Nvidia Jetson Nano for model inference.The experiment results show that the lightweight model can achieve high face detection performance with a small amount of parameters and low computational complexity,and can perform real-time inference on embedded platforms.

关键词

人脸检测 / 滤波器剪枝 / 边缘部署 / Cortex-A57

Key words

face detection / filter pruning / edge deployment / Cortex-A57

引用本文

导出引用
马旺健, 陈小平. Cortex-A57的轻量级人脸检测算法研究*[J]. 集成电路与嵌入式系统. 2023, 23(8): 35-38
Ma Wangjian, Chen Xiaoping. Research on Lightweight Face Detection Algorithm Based on Cortex-A57[J]. Integrated Circuits and Embedded Systems. 2023, 23(8): 35-38
中图分类号: TN391   

参考文献

[1] Kortli Y,Jridi M,Al Falou A,et al.Face recognition systems:A survey[J].Sensors,2020,20(2):342.
[2] Viola P A,Jones M J.Rapid Object Detection using a Boosted Cascade of Simple Features[C]//Computer Vision and Pattern Recognition,2001.CVPR 2001.Proceedings of the 2001 IEEE Computer Society Conference on.IEEE,2001.
[3] Deng J,Guo J,Ververas E,et al.Retinaface: Single-shot multi-level face localisation in the wild[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,2020:5203-5212.
[4] He K,Zhang X,Ren S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition,2016:770-778.
[5] Liu S,Huang D.Receptive field block net for accurate and fast object detection[C]//Proceedings of the European conference on computer vision (ECCV),2018:385-400.

基金

*江苏省自然科学基金(BK20191419)。

PDF(1489 KB)

Accesses

Citation

Detail

段落导航
相关文章

/