空间制冷控制器输出的交流电在整星母线上会产生反射纹波,进而对整星配电器造成恶劣影响,为解决这一问题,传统方法为通过扼流器减小母线上反射纹波的幅值,弊端在于增加了载荷的负重。本文提出一种软件设计方案,基于冲量等效原理,通过并行进程同步生成无符号正弦波和无符号三角载波,通过自然采样法生成SPWM波。采用发送遥控指令的方式将目标相位发送给制冷控制器,通过时序逻辑的约束设计对遥控指令计数进行双采样处理,以建立正确的计时机制,通过嵌套算法实现计时机制的退出和从零点输出SPWM波时机的抓取实现了对SPWM波相位的精确调整,当两台制冷控制器的SPWM波相位差达到180°时,产生在母线上反射纹波的整体幅值最小,起到了抑制反射纹波的作用。经仿真和实验验证,该软件设计方案可替代扼流器抑制反射纹波,从而达到为载荷降低成本、减少负重的效果。
Abstract
The AC output from the space refrigeration controller will produce reflection ripple on the whole star bus,which will have a bad impact on the whole star distributor.To solve this problem,the traditional method is to reduce the amplitude of the reflection ripple on the bus through the choke.The disadvantage is that the choke increases the load.This paper proposes a software design scheme around this pain point:based on the impulse Equivalence principle,by synchronously generating unsigned sine waves and unsigned triangular carriers through parallel processes,the two generate SPWM waves through natural sampling.By sending remote control commands, the target phase is sent to the refrigeration controller.Through the constraint design of temporal logic,the remote control command count is double sampled to establish the correct timing mechanism.Nested algorithms are used to exit the timing mechanism and grasp the timing of outputting SPWM waves from zero,achieving precise adjustment of SPWM wave phase.When the SPWM wave phase difference between the two refrigeration controllers reaches 180°.The overall amplitude of the reflected ripple generated on the busbar is the smallest,which plays a role in suppressing the reflected ripple.Through simulation and experimental verification,this software design scheme can replace the choke to achieve the effect of suppressing the reflected ripple,thereby reducing the cost and the weight for the load.
关键词
SPWM波 /
相位调整 /
抑制反射纹波 /
时序约束
Key words
SPWM wave /
phase adjustment /
suppress reflection ripple /
timing constraints
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 金占雷,孙启扬,张新玉,等.基于辨识的低温制冷系统控制率设计方法[J].航天返回与遥感,2016,42(1):1-10.
[2] 朱建柄.空间深空探测低温制冷技术的发展[J].航天返回与遥感,2010,31(6):39-45.
[3] 陈子印,林喆,赵筱琳,等.空间斯特林制冷机系统模型辨识与预测控制[J].航天返回与遥感,2022,43(3):96-104.
[4] 黄晨,王淑炜,岳晓飞,等.基于航天器动力管路的主动热控控温算法[J].导弹与航天运载技术,2017,28(4):17-20.
[5] S Wu,R D Zhang,R Q Lu,et al.Design of dynamic matrix control based PID for residual oil outlet temperature in a coke furnace[J].Chemometrics and Intelligent Laboratory Systems,2014,134(1):110-117.
[6] 张月,张琢,苏云,等.宽谱段高分辨率低温成像光谱仪制冷系统设计[J].红外与激光工程,2016,45(3):1-8.
[7] 李文霁,曾鸿,任光杰,等.卫星并行测试中测控前端通用化设计[J].航天器工程,2015,24(6):129-133.
[8] Chen B,Liu X P,Liu K F,et al.Fuzzy approximation based adaptive control of nonlinear delayed systems with unknown deadzone[J].IEEE Transactions on Fuzzy Systems,2014,22(2):237-248.
[9] 陈国邦,颜鹏达,李金寿.斯特林低温制冷机的研究与发展[J].低温工程,2006(5):1-10.
[10] 朱鹏,傅雨田.基于FPGA的斯特林制冷机控制系统[J].低温工程,2010(3):39-42.
[11] 雷勇,李泽滔.温室温度系统的自适应模糊PID控制[J].控制工程,2014(S1):23-27.
[12] 杨雪,矛年清,徐圣亚.制冷机在空间红外遥感领域的应用研究[J].真空与低温,2014,20(2):113-124.
[13] 刘瑶瑶.机械制冷机温度控制算法研究[D].北京:中国科学院大学,2016.
[14] 贾阳,刘强,向艳超,等.深空探测对航天器热控技术的推动[J].航天器环境工程,2016(2):115-120.
基金
*国家自然科学基金—基于跨尺度宏微协同的超精密空间光机跟瞄仪(62227812)。