一种深度学习改进算法的图像处理技术研究

常春雷, 运凯, 王辉, 张辉, 徐赢, 马崇瑞

集成电路与嵌入式系统 ›› 2023, Vol. 23 ›› Issue (9) : 45-48.

PDF(1227 KB)
PDF(1227 KB)
集成电路与嵌入式系统 ›› 2023, Vol. 23 ›› Issue (9) : 45-48.
技术纵横

一种深度学习改进算法的图像处理技术研究

  • 常春雷1, 运凯1, 王辉1, 张辉2, 徐赢3, 马崇瑞2
作者信息 +

Research on Deep Learning Improved Algorithm in Image Processing Technology

  • Chang Chunlei1, Yun Kai1, Wang Hui1, Zhang Hui2, Xu Ying3, Ma Chongrui2
Author information +
文章历史 +

摘要

针对YOLOv5算法对目标物体及局部特征定位不准确的问题,提出了一个基于YOLOv5的YOLOv5-ABN目标检测网络。首先为了得到准确的定位信息,本文将卷积注意力机制中的空间注意力机制与坐标注意力机制相结合,提出了一个融合空间特征信息与坐标信息的空间-坐标注意力机制,在YOLOv5的 Backbone网络中加入空间-坐标注意力模块,在Neck检测层引入加权双向特征金字塔网络,并对错框参数进行优化,提高了网络对样本模型及局部特征的检测精度及定位能力,分别用改进前后的算法对自定义数据集和康奈尔数据集进行训练。实验结果表明,改进后的算法性能要优于YOLOv5算法,在识别精度没有降低的前提下,对目标物体的定位更加准确,鲁棒性更好。

Abstract

In order to solve the problem that YOLOv5 algorithm is not accurate in locating the target object and local features,a YOLOv5-ABN target detection network based on YOLOv5 is proposed.Firstly,in order to get accurate positioning information,this paper combines spatial attention mechanism and coordinate attention module in convolution attention mechanism.A spatial and coordinated attention module is proposed,which integrates spatial feature information and coordinate information.The spatial and coordinated attention module is added to the Backbone network of YOLOv5.The weighted bidirectional feature pyramid network is introduced into the Neck detection layer,and the staggered box parameters are optimized,which improves the detection accuracy and positioning ability of the network for sample models and local features.The customized data set and Cornell data set are trained with the improved algorithms respectively.The experiment results show that the improved algorithm is better than YOLOv5 algorithm,and the target object is more accurate and more robust without reducing the recognition accuracy.

关键词

YOLOv5算法 / 目标检测 / 注意力机制 / 加权双向金字塔网络

Key words

YOLOv5 algorithm / target detection / attention mechanism / weighted bidirectional pyramid network

引用本文

导出引用
常春雷, 运凯, 王辉, 张辉, 徐赢, 马崇瑞. 一种深度学习改进算法的图像处理技术研究[J]. 集成电路与嵌入式系统. 2023, 23(9): 45-48
Chang Chunlei, Yun Kai, Wang Hui, Zhang Hui, Xu Ying, Ma Chongrui. Research on Deep Learning Improved Algorithm in Image Processing Technology[J]. Integrated Circuits and Embedded Systems. 2023, 23(9): 45-48
中图分类号: TQ341   

参考文献

[1] 蒋超,张豪章,恩泽惠,等.基于改进YOLOv5s的行人车辆目标检测算法[J].扬州大学学报:自然科学版,2022,25(6):45-49.
[2] 赵元章,耿生玲.基于改进YOLOv5的人脸遮挡物目标检测算法[J].信息通信,2021,34(11):32-35.
[3] 张德春,李海涛,李勋,等.基于CBAM和BiFPN改进YoloV5的渔船目标检测[J].渔业现代化,2022(3):49.
[4] 孙丰刚,王云露,兰鹏,等.基于改进YOLOv5s和迁移学习的苹果果实病害识别方法[J].农业工程学报,2022(11):38.
[5] 吕晓玲,杨胜月,张明路,等.改进YOLOv5网络的鱼眼图像目标检测算法[J].计算机工程与应用,2023,59(6):10.
[6] 向浩,田地.微型计算机与分析仪器的通信技术研究[J].现代科学仪器,2020(6):51-55.
[7] Xia X,Zhai J.Study on Small Target Detection of Construction Site Helmet Based on YOLOv5[C]//Chinese Intelligent Systems Conference.Springer,Singapore,2022.

PDF(1227 KB)

Accesses

Citation

Detail

段落导航
相关文章

/