考虑多输入转换效应的时序建模

丁文杰, 姜海洋, 张展华, 曹鹏

集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (1) : 32-38.

PDF(3685 KB)
PDF(3685 KB)
集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (1) : 32-38. DOI: 10.20193/j.ices2097-4191.2024.01.005
EDA研究专栏

考虑多输入转换效应的时序建模

作者信息 +

Modeling the effects of multiple-input switching

Author information +
文章历史 +

摘要

随着集成电路工艺的不断发展,因电路工作主频的提升和工艺偏差影响的加剧,导致多输入转换(MIS)效应对电路静态时序分析的影响愈发不容忽视,使得传统的单输入转换(SIS)模式单元时序建库方式难以规避保持时间和建立时间的违规。为了表征MIS效应在时序分析中的影响,近年来多个MIS延时模型被提出,但目前大多数模型忽略了输入转换时间和负载对MIS效应的影响,因此精度不高。同时这些模型分别对每个单元进行建模,忽略了MIS效应与单元的晶体管级拓扑结构的关系,进一步影响了表征精度且需要较高表征成本。本文提出了一种基于异质图神经网络的MIS单元延时预测框架,将多输入单元的晶体管级拓扑电路建模成为异质图,利用异质图对影响MIS延时因素进行了全面且有效的表征,多个输入门的MIS效应可以训练为统一模型。在16 nm工艺下,该模型在多组多输入单元上进行了验证。实验结果表明,该模型在将建模开销减少至ANN模型所需开销8.8%的情况下,对于单元的平均误差仅为1.19%,相比ANN模型,精度提高了2.05倍。

Abstract

With the advancement of integrated circuit technology and the increasing operating frequency of circuits,the impact of Multiple-Input Switching (MIS) effects on circuit static timing analysis has become more prominent,exacerbated by process variations.Traditional Single-Input Switching (SIS) timing library construction methods struggle to handle violations of hold time and setup time.In recent years,several MIS delay models have been proposed to characterize the influence of MIS effects in timing analysis.However,most of these models overlook the impact of input switching time and load on MIS effects,resulting in pessimistic and less accurate predictions.Furthermore,these models individually model each unit without considering the relationship between MIS effects and the transistor-level topology of the unit,leading to decreased accuracy and higher characterization costs.To address these challenges,this paper proposes a novel MIS unit delay prediction framework based on heterogeneous graph neural networks.The transistor-level circuitry of multiple-input units is modeled as a heterogeneous graph,providing a comprehensive and effective representation of factors influencing MIS delay.Multiple-input gate MIS effects are trained as a unified model within this framework.In the context of the 16 nm process,the proposed model is validated on multiple-input units.The experiment results indicate that while reducing the modeling cost to 8.8% of the cost required by the ANN model,the model achieves an average error of only 1.19% for units.Compared to the ANN model,the accuracy has improved 2.05 times.

关键词

多输入转换 / 异质图神经网络 / 单元延时模型 / 静态时序分析

Key words

multiple input switching / heterogeneous graph neural networks / cell delay model / static timing analysis

引用本文

导出引用
丁文杰, 姜海洋, 张展华, . 考虑多输入转换效应的时序建模[J]. 集成电路与嵌入式系统. 2024, 24(1): 32-38 https://doi.org/10.20193/j.ices2097-4191.2024.01.005
DING Wenjie, JIANG Haiyang, ZHANG Zhanhua, et al. Modeling the effects of multiple-input switching[J]. Integrated Circuits and Embedded Systems. 2024, 24(1): 32-38 https://doi.org/10.20193/j.ices2097-4191.2024.01.005
中图分类号: TN47 (大规模集成电路、超大规模集成电路)   

参考文献

[1]
Multiple Input Switching (MIS) effects in timing[EB/OL]. [2023-11]. https://www.tauworkshop.com/2019/slides/TAU19_MIS_Panel_Final.pdf,2019.
[2]
CHANDRAMOULI V, SAKALLAH K A. Modeling the effects of temporal proximity of input transitions on gate propagation delay and transition time[C]// Proceedings of the 33rd Annual Design Automation Conference, 1996:617-622.
[3]
MAZUMDAR A, SETH A, KOTHA U. Computation reduction for multi-input switching analysis in STA[C]// 2019 ACM International Workshop on Timing Issues in the Specification and Synthesis of Digital Systems, 2019:16-21.
[4]
NABAVI-LISHI A, RUMIN N C. Inverter models of CMOS gates for supply current and delay evaluation[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1994, 13(10):1271-1279.
[5]
CHATZIGEORGIOU A, NIKOLAIDIS S, TSOUKALAS I. A modeling technique for CMOS gates[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1999, 18 (5):557-575.
[6]
RAM O V S S, SAURABH S. Modeling multiple-input switching in timing analysis using machine learning[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 40(4):723-734.
[7]
YOUNG T, HAZARIKA D, PORIA S, et al. Recent trends in deep learning based natural language processing[J]. IEEE Computational intelligence magazine, 2018, 13(3):55-75.
[8]
REN H, KOKAI G F, TURNER W J, et al. ParaGraph: Layout parasitics and device parameter prediction using graph neural networks[C]// 2020 57th ACM/IEEE Design Automation Conference (DAC), 2020:1-6.
[9]
CHEN H, ZHU K, LIU M, et al. Universal symmetry constraint extraction for analog and mixed-signal circuits with graph neural networks[C]// 2021 58th ACM/IEEE Design Automation Conference (DAC), 2021:1243-1248.
[10]
SHI C, PHILIP S Y. Heterogeneous information network analysis and applications[M]. Cham: Springer International Publishing, 2017.
[11]
REN H, FOJTIK M. Nvcell:Standard cell layout in advanced technology nodes with reinforcement learning[C]// 2021 58th ACM/IEEE Design Automation Conference (DAC), 2021:1291-1294.

基金

国家自然科学基金(62174031)

责任编辑: 薛士然
PDF(3685 KB)

Accesses

Citation

Detail

段落导航
相关文章

/