Chiplet技术发展与挑战

刘朝阳, 任博琳, 王则栋, 吕方旭, 郑旭强

集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (2) : 10-22.

PDF(9262 KB)
PDF(9262 KB)
集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (2) : 10-22. DOI: 10.20193/j.ices2097-4191.2024.02.002
Chiplet研究专栏

Chiplet技术发展与挑战

作者信息 +

Development and challenges of Chiplet technology

Author information +
文章历史 +

摘要

随着半导体工艺尺寸逐渐逼近物理极限,芯片的功耗、性能和面积随工艺制程进步而带来的提升越来越小,半导体技术进入“后摩尔时代”。为进一步满足机器学习与人工智能等信息通信行业快速发展带来的高带宽通信需求,基于先进的互连和封装技术的Chiplet技术步入了我们的视野。Chiplet技术将原来的复杂多功能SoC芯片拆成多个小面积、低成本、不同工艺节点的小芯片,再进行重新组装,因其良率高、成本低、集成度高、性能强大、灵活性好、上市时间快等优点受到学术界和产业界的高度关注。本文对Chiplet的技术特征、优势、发展历史以及具体应用进行了梳理和阐述,同时详细介绍了Chiplet的关键核心技术尤其是Chiplet D2D互连技术,最后叙述了Chiplet现存的技术问题与挑战,并给出了未来发展建议。

Abstract

As the size of semiconductor technology gradually approaches the physical limit,the progress of process technology has led to a decreasing improvement in the power consumption,area,and other performance of chips,semiconductor technology has entered the “post-Moore era”.In order to further meet the high bandwidth communication needs brought about by the rapid development of machine learning,artificial intelligence,and other information and communication industries,Chiplet technology which based on advanced interconnection and packaging techniques,steps into the picture.Chiplet technology disassembles the original complex multifunctional SoC chip into small chips with small area,low cost,and different process nodes,and assembles them through advanced packaging technology,which has received high attention from academia and industry due to its advantages of high yield,low cost,high integration,strong performance,good flexibility,and fast time-to-market.This paper summarizes and elaborates on the technical characteristics,advantages,development history,and specific applications of Chiplet.Meanwhile,the core technologies of Chiplet,especially Chiplet D2D interconnect technology,are introduced in detail.Finally,the existing technical issues and challenges of Chiplet are described,and the suggestions for future development are put forward.

关键词

芯粒 / 裸片互连 / 高速串行接口 / 单端并行接口 / UCIe / SerDes

Key words

Chiplet / D2D / high-speed serial interface / single-ended parallel interface / UCIe / SerDes

引用本文

导出引用
刘朝阳, 任博琳, 王则栋, . Chiplet技术发展与挑战[J]. 集成电路与嵌入式系统. 2024, 24(2): 10-22 https://doi.org/10.20193/j.ices2097-4191.2024.02.002
LIU Zhaoyang, REN Bolin, WANG Zedong, et al. Development and challenges of Chiplet technology[J]. Integrated Circuits and Embedded Systems. 2024, 24(2): 10-22 https://doi.org/10.20193/j.ices2097-4191.2024.02.002
中图分类号: TN402 (设计)   

参考文献

[1]
钟伟军, 任翔, 赵鑫. 异构集成芯片关键技术研究[J]. 信息技术与标准化, 2021(7):6-10.
ZHONG W J, REN X, ZHAO X. Research on Key Technologies of Heterogeneous Integrated Chips[J]. Information Technology and Standardization, 2021(7):6-10 (in Chinese).
[2]
R Munoz. Furthering Moore’s Law Integration Benefits in the Chiplet Era[J]. IEEE Design & Test, 2023:1.doi: 10.1109/MDAT.2023.3302809.
[3]
杨晖. 后摩尔时代Chiplet技术的演进与挑战[J]. 集成电路应用, 2020, 37(5):52-54.doi: 10.19339/j.issn.1674-2583.2020.05.017.
YANG H. Evolution and Challenges of Chiplet Technology in the Post Moore Era[J]. Integrated Circuit Applications, 2020, 37(5):52-54.doi:10.19339/j.issn.1674-2583.2020.05.017 (in Chinese).
[4]
D KULKARNI. Heterogeneous Integration with 3D Chiplets[C]// 2023 International VLSI Symposium on Technology, Systems and Applications (VLSI-TSA/VLSI-DAT), 2023(4):17-20.doi:10.1109/VLSI-TSA/VLSI-DAT57221.2023.10134194.
[5]
S SUTARDJA. The future of IC design innovation[C]// 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical, 2015:22-26.doi: 10.1109/ISSCC.2015.7062847.
[6]
李应选. Chiplet的现状和需要解决的问题[J]. 微电子学与计算机, 2022, 39(5):1-9.doi: 10.19304/j.Issn1000-7180.2022.0036.
LI Y X. The current situation and problems that need to be solved of Chiplets[J]. Microelectronics and Computers, 2022, 39(5):1-9.doi:10.19304/j.Issn1000-7180.2022.0036 (in Chinese).
[7]
蒋剑飞, 王琴, 贺光辉, 等. Chiplet技术研究与展望[J]. 微电子学与计算机, 2022, 39(1):1-6.doi:10.19304/j.issn1000-7180.2021.1180.
JIANG J F, WANG Q, HE G H, et al. Chiplet Technology Research and Prospects[J]. Microelectronics and Computer Science, 2022, 39(1):1-6.doi: 10.19304/j.issn1000-7180.2021.1180 (in Chinese).
[8]
T BURD. Zen3:The AMD 2nd-Generation 7nm x86-64 Microprocessor Core[J]. 2022 IEEE International Solid-State Circuits Conference (ISSCC), 2022:20-26.doi: 10.1109/ISSCC42614.2022.9731678.
[9]
T SINGH. Zen 2:The AMD 7nm Energy-Efficient High-Performance x86-64 Microprocessor Core[C]// 2020 IEEE International Solid-State Circuits Conference(ISSCC), 2020:16-20.doi:10.1109/ISSCC19947.2020.9063113.
[10]
B MUNGER. Zen 4:The AMD 5nm 5.7GHz x86-64 Microprocessor Core[C]//2023 IEEE International Solid-State Circuits Conference (ISSCC), 2023:19-23.doi: 10.1109/ISSCC42615.2023.10067540.
[11]
Z ZHANG. Analysis of the Advantages of the M1 CPU and Its Impact on the Future Development of Apple[C]//in 2021 2nd International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE), 2021:24-26.doi:10.1109/ICBASE53849.2021.00143.
[12]
J CHOQUETTE. NVIDIA Hopper H100 GPU:Scaling Performance[J]. IEEE Micro, 2023, 43(3):9-17.doi: 10.1109/MM.2023.3256796.
[13]
M HONG, L XU. 壁仞 BR100 GPGPU:Accelerating Datacenter Scale AI Computing[C]// 2022 IEEE Hot Chips 34 Symposium (HCS), 2022:21-23.doi: 10.1109/HCS55958.2022.9895604.
[14]
D D SHARMA, G PASDAST, Z QIAN, et al. Universal Chiplet Interconnect Express (UCIe):An Open Industry Standard for Innovations With Chiplets at Package Level[J]. IEEE Transactions on Components,Packaging and Manufacturing Technology, 2022, 12(9):1423-1431.doi: 10.1109/TCPMT.2022.3207195.
[15]
K SEONG. A 4nm 32Gb/s 8Tb/s/mm Die-to-Die Chiplet Using NRZ Single-Ended Transceiver With Equalization Schemes And Training Techniques[C]// 2023 IEEE International Solid-State Circuits Conference (ISSCC), 2023:19-23.doi:10.1109/ISSCC42615.2023.10067477.
[16]
Y U JEONG, J H CHAE, S KIM. A 0.85-pJ/b 16-Gb/s/Pin Single-Ended Transmitter With Integrated Voltage Modulation for Low-Power Memory Interfaces[J]. IEEE Journal of Solid-State Circuits, 2023, 58(9):2659-2667.doi: 10.1109/JSSC.2023.3269765.
[17]
Y KWON. A 33-Gb/s/Pin 1.09-pJ/Bit Single-Ended PAM-3 Transceiver With Ground-Referenced Signaling and Time-Domain Decision Technique for Multi-Chip Module Memory Interfaces[J]. IEEE Journal of Solid-State Circuits, 2023, 58(8):2314-2325.doi: 10.1109/JSSC.2023.3250706.
[18]
Q LIU, L DU, Y DU. A 0.90-Tb/s/in 1.29-pJ/b Wireline Transceiver With Single-Ended Crosstalk Cancellation Coding Scheme for High-Density Interconnects[J]. IEEE Journal of Solid-State Circuits, 2023, 58(8):2326-2336.doi: 10.1109/JSSC.2023.3261125.
[19]
J SEO, S LEE, M LEE, et al. A 20-Gb/s/Pin Compact Single-Ended DCC-Less DECS Transceiver With CDR-Less RX Front-End for On-Chip Links[J]. IEEE Journal of Solid-State Circuits, 2023, 58(11):3253-3265.doi: 10.1109/JSSC.2023.3287071.
[20]
K MCCOLLOUGH, S D HUSS, J VANDERSAND, et al. A 480Gb/s/mm 1.7pJ/b Short-Reach Wireline Transceiver Using Single-Ended NRZ for Die-to-Die Applications[C]// 2021 IEEE International Solid-State Circuits Conference (ISSCC), 2021:13-22.doi: 10.1109/ISSCC42613.2021.9366048.
[21]
Y U JEONG, H PARK, C HYUN, et al. A 0.64-pJ/Bit 28-Gb/s/Pin High-Linearity Single-Ended PAM-4 Transmitter With an Impedance-Matched Driver and Three-Point ZQ Calibration for Memory Interface[J]. IEEE Journal of Solid-State Circuits, 2021, 56(4):1278-1287.doi: 10.1109/JSSC.2020.3042240.
[22]
P W CHIU, C KIM. A 32Gb/s Digital-Intensive Single-Ended PAM-4 Transceiver for High-Speed Memory Interfaces Featuring a 2-Tap Time-Based Decision Feedback Equalizer and an In-Situ Channel-Loss Monitor[C]// 2020 IEEE International Solid-State Circuits Conference (ISSCC), 2020:16-20.doi: 10.1109/ISSCC19947.2020.9063137.
[23]
J W POULTON. A 1.17-pJ/b,25-Gb/s/pin Ground-Referenced Single-Ended Serial Link for Off- and On-Package Communication Using a Process- and Temperature-Adaptive Voltage Regulator[J]. IEEE Journal of Solid-State Circuits, 2019, 54(1):43-54.doi: 10.1109/JSSC.2018.2875092.
[24]
G GANGASANI. A 1.6Tb/s Chiplet over XSR-MCM Channels using 113Gb/s PAM-4 Transceiver with Dynamic Receiver-Driven Adaptation of TX-FFE and Programmable Roaming Taps in 5nm CMOS[C]// 2022 IEEE International Solid-State Circuits Conference (ISSCC), 2022:20-26.doi:10.1109/ISSCC42614.2022.9731636.
[25]
R YOUSRY. A 1.7pJ/b 112Gb/s XSR Transceiver for Intra-Package Communication in 7nm FinFET Technology[C]// in 2021 IEEE International Solid-State Circuits Conference (ISSCC), 2021:13-22.doi: 10.1109/ISSCC42613.2021.9365752.
[26]
R SHIVNARAINE. A 26.5625-to-106.25Gb/s XSR SerDes with 1.55pJ/b Efficiency in 7nm CMOS," in 2021 IEEE International Solid-State Circuits Conference (ISSCC), 2021:13-22.doi:10.1109/ISSCC42613.2021.9365975.
[27]
C F POON. A 1.24-pJ/b 112-Gb/s (870 Gb/s/Mm) Transceiver for In-Package Links in 7-nm FinFET[J]. IEEE Journal of Solid-State Circuits, 2022, 57(4):1199-1210.doi:10.1109/JSSC.2022.3141802.
[28]
B ZHANG. A 112-Gb/s Serial Link Transceiver With Three-Tap FFE and 18-Tap DFE Receiver for up to 43-dB Insertion Loss Channel in 7-nm FinFET Technology[J]. IEEE Journal of Solid-State Circuits, 2024, 59(1):8-18.doi: 10.1109/JSSC.2023.3313524.
[29]
H PARK. A 4.63pJ/b 112Gb/s DSP-Based PAM-4 Transceiver for a Large-Scale Switch in 5nm FinFET[C]// 2023 IEEE International Solid-State Circuits Conference (ISSCC), 2023:19-23.doi:10.1109/ISSCC42615.2023.10067613.
[30]
A KHAIRI. A 1.41-pJ/b 224-Gb/s PAM4 6-bit ADC-Based SerDes Receiver With Hybrid AFE Capable of Supporting Long Reach Channels[J]. IEEE Journal of Solid-State Circuits, 2023, 58(1):8-18.doi:10.1109/JSSC.2022.3211475.
[31]
Z GUO. A 112.5Gb/s ADC-DSP-Based PAM-4 Long-Reach Transceiver with >50dB Channel Loss in 5nm FinFET[C]// 2022 IEEE International Solid-State Circuits Conference (ISSCC), 2022:20-26.doi: 10.1109/ISSCC42614.2022.9731650.
[32]
B YE. A 2.29pJ/b 112Gb/s Wireline Transceiver with RX 4-Tap FFE for Medium-Reach Applications in 28nm CMOS[C]// 2022 IEEE International Solid-State Circuits Conference (ISSCC), 2022:20-26.doi: 10.1109/ISSCC42614.2022.9731591.
[33]
J KIM. A 224Gb/s DAC-Based PAM-4 Transmitter with 8-Tap FFE in 10nm CMOS[C]// 2021 IEEE International Solid-State Circuits Conference (ISSCC), 2021:13-22.doi: 10.1109/ISSCC42613.2021.9365840.
[34]
Z WANG. An Output Bandwidth Optimized 200-Gb/s PAM-4 100-Gb/s NRZ Transmitter With 5-Tap FFE in 28-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2021, 57(1):21-31.doi:10.1109/JSSC.2021.3109562.
[35]
E CHONG. A 112Gb/s PAM-4,168Gb/s PAM-8 7bit DAC-Based Transmitter in 7nm FinFET[C]// ESSCIRC 2021-IEEE 47th European Solid State Circuits Conference (ESSCIRC), 2021:13-22.doi: 10.1109/ESSCIRC53450.2021.9567801.
[36]
P MISHRA. A 112Gb/s ADC-DSP-Based PAM-4 Transceiver for Long-Reach Applications with >40dB Channel Loss in 7nm FinFET[C]// 2021 IEEE International Solid-State Circuits Conference (ISSCC), 2021:13-22.doi:10.1109/ISSCC42613.2021.9365929.
[37]
D XU. A Scalable Adaptive ADC/DSP-Based 1.25-to-56Gbps/112Gbps High-Speed Transceiver Architecture Using Decision-Directed MMSE CDR in 16nm and 7nm[C]// 2021 IEEE International Solid-State Circuits Conference (ISSCC), 2021:13-22.doi: 10.1109/ISSCC42613.2021.9366063.
[38]
T ALI. A 460mW 112Gb/s DSP-Based Transceiver with 38dB Loss Compensation for Next-Generation Data Centers in 7nm FinFET Technology[C]// 2020 IEEE International Solid-State Circuits Conference (ISSCC), 2020:16-20.doi:10.1109/ISSCC19947.2020.9062925.
[39]
J IM. A 112Gb/s PAM-4 Long-Reach Wireline Transceiver Using a 36-Way Time-Interleaved SAR-ADC and Inverter-Based RX Analog Front-End in 7nm FinFET[C]// 2020 IEEE International Solid-State Circuits Conference (ISSCC), 2020:16-20.doi: 10.1109/ISSCC19947.2020.9063081.
[40]
E GROEN. 10-to-112-Gb/s DSP-DAC-Based Transmitter in 7-nm FinFET With Flex Clocking Architecture[J]. IEEE Journal of Solid-State Circuits, 2021, 56(1):30-42.doi: 10.1109/JSSC.2020.3036981.
[41]
A CEVRERO. A 100Gb/s 1.1pJ/b PAM-4 RX with Dual-Mode 1-Tap PAM-4 / 3-Tap NRZ Speculative DFE in 14nm CMOS FinFET[C]// 2019 IEEE International Solid-State Circuits Conference (ISSCC), 2019:17-21.doi: 10.1109/ISSCC.2019.8662495.
[42]
Z TOPRAK-DENIZ. A 128-Gb/s 1.3-pJ/b PAM-4 Transmitter With Reconfigurable 3-Tap FFE in 14-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2020, 55(1):19-26.doi:10.1109/JSSC.2019.2939081.
[43]
J KIM. A 112 Gb/s PAM-4 56 Gb/s NRZ Reconfigurable Transmitter With Three-Tap FFE in 10-nm FinFET[J]. IEEE Journal of Solid-State Circuits, 2019, 54,(1):29-42,.doi:10.1109/JSSC.2018.2874040.
[44]
C MENOLFi. A 112Gb/S 2.6pJ/b 8-Tap FFE PAM-4 SST TX in 14nm CMOS[C]// 2018 IEEE International Solid-State Circuits Conference (ISSCC), 2018:11-15.doi: 10.1109/ISSCC.2018.8310205.
[45]
P Upadhyaya. A fully adaptive 19-to-56Gb/s PAM-4 wireline transceiver with a configurable ADC in 16nm FinFET[C]// 2018 IEEE International Solid-State Circuits Conference (ISSCC), 2018:11-15.doi: 10.1109/ISSCC.2018.8310207.
[46]
L WANG, Y FU, M LACROIX, et al. A 64Gb/s PAM-4 transceiver utilizing an adaptive threshold ADC in 16nm FinFET[C]// 2018 IEEE International Solid-State Circuits Conference (ISSCC), 2018:11-15.doi: 10.1109/ISSCC.2018.8310208.
[47]
陈桂林, 王观武, 胡健, 等. Chiplet封装结构与通信结构综述[J]. 计算机研究与发展, 2022, 59(1):22-30.
CHEN G L, WANG G W, HU J, et al. Overview of Chiplet Packaging and Communication Structures[J]. Computer Research and Development, 2022, 59(1):22-30 (in Chinese).
[48]
项少林, 郭茂, 蒲菠, 等. Chiplet技术发展现状[J]. 科技导报, 2023, 41(19):113-131.
XIANG SH L, GUO M, PU B, et al. Current Development Status of Chiplet Technology[J]. Science and Technology Review, 2023, 41(19):113-131 (in Chinese).
[49]
钟毅, 江小帆, 喻甜, 等. 芯片三维互连技术及异质集成研究进展[J]. 电子与封装, 2023, 23(3):18-28.doi: 10.16257/j.cnki.1681-1070.2023.0041.
ZHONG Y, JIANG X F, YU T, et al. Research progress in chip 3D interconnect technology and heterogeneous integration[J]. Electronics and Packaging, 2023, 23(3):18-28.doi:10.16257/j.cnki.1681-1070.2023.0041 (in Chinese).
[50]
李乐琪, 刘新阳, 庞健. Chiplet关键技术与挑战[J]. 中兴通讯技术, 2022, 28(5):57-62.
LI L Q, LIU X Y, PANG J. Chiplet Key Technologies and Challenges[J]. ZTE Technology, 2022, 28(5): 57-62 (in Chinese).
[51]
王洪鹏, 沙于兵, 王志华. Chiplet背景下的接口技术与标准化[J]. 微纳电子与智能制造, 2022, 4(2):13-21.doi: 10.19816/j.cnki.10-1594/tn.2022.02.013.
WANG H P, SHA Y B, WANG ZH H. Interface Technology and Standardization in the Context of Chiplet[J]. Microelectronics and Intelligent Manufacturing, 2022, 4(2):13-21.doi:10.19816/j.cnki.10-1594/tn.2022.02-013 (in Chinese).
[52]
郭继旺, 尹文婷, 谈玲燕, 等. Chiplet异构集成微系统的EDA工具发展综述[J]. 微电子学与计算机, 2023(11):53-60.doi: 10.19304/j.Issn1000-7180.2023.0703.
GUO J W, YIN W T, TAN L Y, et al. Overview of EDA Tool Development for Chiplet Heterogeneous Integrated Microsystems[J]. Microelectronics and Computers, 2023(11):53-60. doi:10.19304/j.Issn1000-7180.2023.0703 (in Chinese).
[53]
龙志军, 郝颖丽, 丁学伟, 等. Chiplet接口IP 3DIC混合信号仿真验证[J]. 中国集成电路, 2022, 31(8):55-62.
LONG ZH J, HAO Y L, DING X W, et al. Chiplet interface IP 3DIC mixed signal simulation verification[J]. China Integrated Circuit, 2022, 31 (8):55-62 (in Chinese).
[54]
R GULVE, D P BADE, S KULKARNI, et al. Test Methodology Automation for Multi-Die Package Realization[C]// 2022 IEEE International Test Conference India (ITC India), 2022:24-26.doi:10.1109/ITCIndia202255192.2022.9854654.
[55]
M HUTNER, R SETHURAM, B VINNAKOTA, et al. Special Session: Test Challenges in a Chiplet Marketplace[C]// 2020 IEEE 38th VLSI Test Symposium (VTS), 2020:5-8:1-12.doi: 10.1109/VTS48691.2020.9107636.
[56]
解维坤, 蔡志匡, 刘小婷, 等. 芯粒测试技术综述[J]. 电子与封装, 2023, 23(11):5-15.doi: 10.16257/j.cnki.1681-1070.2023.0170 (in Chinese).
XIE W K, CAI ZH K, LIU X T, et al. Review of Core Particle Testing Technology[J]. Electronics and Packaging, 2023, 23(11):5-15.doi:10.16257/j.cnki.1681-1070.2023.0170 (in Chinese).
[57]
张志伟, 田果, 王世权. 先进封装Chiplet技术与AI芯片发展[J]. 中阿科技论坛(中英文), 2023(11):90-94.
ZHANG ZH W, TIAN G, WANG SH Q. Advanced Packaging Chiplet Technology and AI Chip Development[J]. China Arab Technology Forum (in Chinese and English), 2023(11):90-94 (in Chinese).

基金

“光电子与微电子器件及集成”国家重点研发计划(2021YFB2206602)
国家自然科学基金(92373119)

编辑: 薛士然
PDF(9262 KB)

Accesses

Citation

Detail

段落导航
相关文章

/