基于铷原子钟的高精度守时技术

左兆辉, 王铮, 刘铁强

集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (2) : 70-73.

PDF(882 KB)
PDF(882 KB)
集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (2) : 70-73. DOI: 10.20193/j.ices2097-4191.2024.02.009
研究论文

基于铷原子钟的高精度守时技术

作者信息 +

High-precision time-keeping technology based on rubidium atomic clock

Author information +
文章历史 +

摘要

针对铷原子钟守时特性,提出了一种高精度守时技术。该技术采用温度及频率漂移智能分离算法,自动分离出温度和频率漂移特性,并采用多次曲线拟合方式分别拟合出频率漂移和温度特性曲线,在守时过程中分开进行精准补偿,实现铷原子钟高精度的守时。

Abstract

In the paper,a high-precision time-keeping technology is proposed for the time-keeping characteristics of rubidium atomic clock.It uses intelligent temperature and frequency drift separation algorithms to automatically separate temperature and frequency drift characteristics,and uses multiple curve fitting methods to fit frequency drift and temperature characteristic curves separately.During the time-keeping process,accurate compensation is carried out separately,thus to achieve high-precision time-keeping of rubidium atomic clock.

关键词

温度特性分离 / 频率漂移分离 / 高精度守时 / BM2106

Key words

temperature characteristic separation / frequency drift separation / high-precision time-keeping / BM2106

引用本文

导出引用
左兆辉, 王铮, 刘铁强. 基于铷原子钟的高精度守时技术[J]. 集成电路与嵌入式系统. 2024, 24(2): 70-73 https://doi.org/10.20193/j.ices2097-4191.2024.02.009
ZUO Zhaohui, WANG Zheng, LIU Tieqiang. High-precision time-keeping technology based on rubidium atomic clock[J]. Integrated Circuits and Embedded Systems. 2024, 24(2): 70-73 https://doi.org/10.20193/j.ices2097-4191.2024.02.009
中图分类号: TN921   

参考文献

[1]
张俊, 王世伟, 郭永刚, 等. 铷频标温度系数影响因素分析与改进方法研究[J]. 宇航计测技术, 2019, 39(5):12-18.
ZHANG J, WANG SH W, GUO Y G, et al. Analysis of factors affecting the temperature coefficient of rubidium frequency standards and research on improvement methods[J]. Journal of Astronautic Metrology and Measurement, 2019, 39(5):12-18 (in Chinese).
[2]
王亚军, 张磊, 谷扬, 等. 基于FPGA的北斗驯服铷原子频标装置的研制[J]. 计量学报, 2020, 41(3):259-262.
WANG Y J, ZHANG L, GU Y, et al. Development of a FPGA based Beidou Taming Rubidium Atomic Frequency Standard Device[J]. Acta Metrologica Sinica, 2020, 41(3):259-262 (in Chinese).
[3]
王鹏, 李世光, 党明朝, 等. 基于光纤双环网的高精度时频同步技术研究[J]. 宇航计测技术, 2019, 39(5):33-37.
WANG P, LI SH G, DANG M CH, et al. Research on high-precision time-frequency synchronization technology based on fiber optic double ring network[J]. Journal of Astronautic Metrology and Measurement, 2019, 39(5):33-37 (in Chinese).
[4]
孙雪淋. 基于北斗授时系统的恒温晶振驯服守时技术研究[D]. 绵阳: 西南科技大学, 2021.
SUN X L. Research on Constant Temperature Crystal Oscillator Taming and Timekeeping Technology Based on the Beidou Timing System[D]. Mianyang: Southwest University of Science and Technology, 2021 (in Chinese).
[5]
古康, 李鹏, 王超, 等. 基于环境感知技术的高精度守时系统设计[J]. 电子测量技术, 2015, 38(5):24-26,36.
GU K, LI P, WANG CH, et al. Design of High Precision Timekeeping System Based on Environmental Perception Technology[J]. Electronic Measurement Technology, 2015, 38(5):24-26,36 (in Chinese).
[6]
贾杨洁. 恒温晶振驯服和保持技术研究[D]. 西安: 西安电子科技大学, 2021.
JIA Y J. Research on Taming and Maintaining Technology of Constant Temperature Crystal Oscillators[D]. Xi'an: Xidian University, 2021 (in Chinese).
[7]
白冲. 基于DDS的铷原子钟老化漂移的自动补偿[D]. 西安: 西安电子科技大学, 2011.
BAI CH. Automatic compensation for aging drift of rubidium atomic clocks based on DDS[D]. Xi'an: Xidian University, 2011 (in Chinese).

编辑: 薛士然
PDF(882 KB)

Accesses

Citation

Detail

段落导航
相关文章

/