采用LTE-Cat.1通信的物联网高精度高度计设计

郑俊华, 郑雅伟

集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (2) : 96-100.

PDF(951 KB)
PDF(951 KB)
集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (2) : 96-100. DOI: 10.20193/j.ices2097-4191.2024.02.014
研究论文

采用LTE-Cat.1通信的物联网高精度高度计设计

作者信息 +

Design of high-precision IoT altimeter using LTE-Cat.1 communication

Author information +
文章历史 +

摘要

为解决传统的基于物联网的远程测量技术中存在的测量精度与传感器成本无法兼顾、数据更新实时性不好、通信成本过高的问题,提出一种传感器数据采集方案,利用软件算法实现了高精度。同时,采用LTE-Cat-1为数据通信方式,将数据传输到远程云服务器及终端。将方案运用到远程海拔高度测量中,经过严谨的计算和测试验证,测量的绝对误差小于5 m,相对误差低于0.5%,数据传输的稳定性高,实时性可以控制到1 s之内,同时兼顾了通信的成本,在数据上传频率达到1次/s的情况下,数据流量可以控制在600 KB/h,满足系统的高精度、低成本、高实时性和稳定性要求。

Abstract

In the traditional remote measurement technology based on the Internet of Things,there are many problems such as the measurement accuracy and sensor cost cannot be balanced,the real-time data update is not good,and the communication cost is too high.Based on this problem,a data acquisition scheme is proposed,which uses software algorithms to achieve high precision.At the same time,LTE-Cat-1 is used as the data communication method to transmit data to remote cloud servers and terminals.The program is applied to the remote altitude measurement.After rigorous calculation and test verification,the absolute error of the measurement is less than 5 meters,the relative error is less than 0.5%,the stability of data transmission is high,and the real-time transmission can be controlled to less than 1 second.Internally,the cost of communication is taken into account at the same time.When the data upload frequency reaches 1 time/s,the data flow can be controlled at 600 KB/h,which meets the requirements of high precision,low cost,high real-time performance and stability of the system.

关键词

物联网 / 传感器 / 远程测量 / LTE-Cat.1

Key words

IoT / sensor / remote measurement / LTE-Cat.1

引用本文

导出引用
郑俊华, 郑雅伟. 采用LTE-Cat.1通信的物联网高精度高度计设计[J]. 集成电路与嵌入式系统. 2024, 24(2): 96-100 https://doi.org/10.20193/j.ices2097-4191.2024.02.014
ZHENG Junhua, ZHENG Yawei. Design of high-precision IoT altimeter using LTE-Cat.1 communication[J]. Integrated Circuits and Embedded Systems. 2024, 24(2): 96-100 https://doi.org/10.20193/j.ices2097-4191.2024.02.014
中图分类号: TN98   

参考文献

[1]
王莉, 周潼, 麻林伟, 等. 基于WebAccess的矿热炉远程监控系统设计[J]. 现代电子技术, 2020, 43(14):30-33,37.
WANG L, ZHOU T, MA L W, et al. Design of a WebAccess based remote monitoring system for submerged arc furnaces[J]. Modern Electronic Technology, 2020, 43(14):30-33,37 (in Chinese).
[2]
吴兴虎. 基于DSP的便携式直流电场测量仪技术研究[D]. 西安: 西安电子科技大学, 2019.
WU X H. Research on Portable DC Electric Field Measurement Instrument Technology Based on DSP[D]. Xi'an: Xi'an University of Electronic Science and Technology, 2019 (in Chinese).
[3]
支子聪, 陈新, 李昌, 等. 分层分簇无线传感器网络汇聚层的多目标优化部署[J]. 传感技术学报, 2020, 33(4):571-578.
ZHI Z C, CHEN X, LI CH, et al. Multi objective optimization deployment of the aggregation layer in layered and clustered wireless sensor networks[J]. Journal of Sensing Technology, 2020, 33(4):571-578 (in Chinese).
[4]
韩文征, 姚晓东, 黄煊赫. 基于LoRa的光伏电站监控系统[J]. 仪表技术与传感器, 2020(6):59-62.
HAN W ZH, YAO X D, HUANG X H. LoRa based photovoltaic power station monitoring system[J]. Instrument Technology and Sensors, 2020(6):59-62 (in Chinese).
[5]
王晓蕾, 马祥辉, 杨长业, 等. 数字式气压传感器静态性能测试与评估[J]. 解放军理工大学学报(自然科学版), 2013, 14(6):603-607.
WANG X L, MA X H, YANG CH Y, et al. Static Performance Testing and Evaluation of Digital Air Pressure Sensors[J]. Journal of PLA University of Technology (Natural Science Edition), 2013, 14(6):603-607 (in Chinese).
[6]
廖伟志, 张文强, 吕清泉, 等. 基于4G的高分辨率气象监测系统研究与设计[J]. 合肥工业大学学报(自然科学版), 2021, 44(1):42-46,117.
LIAO W ZH, ZHANG W Q, LV Q Q, et al. Research and Design of High Resolution Meteorological Monitoring System Based on 4G[J]. Journal of Hefei University of Technology (Natural Science Edition), 2021, 44(1):42-46,117 (in Chinese).
[7]
王帏韬, 火久元, 任智男. 基于6LoWPAN和MQTT的寒旱区野外环境监测系统设计[J]. 计算机应用与软件, 2020, 37(7):61-67,73.
WANG W T, HUO J Y, REN ZH N. Design of a field environmental monitoring system for cold and arid areas based on 6LoWPAN and MQTT[J]. Computer Application and Software, 2020, 37(7):61-67,73 (in Chinese).
[8]
崔喜爱, 顾浩, 曹云昌. 位势高度计算中气压-高度公式的简化及其误差[J]. 气象科技, 2017, 45(2):307-312.
CUI X A, GU H, CAO Y CH. Simplification and error of the pressure height formula in the calculation of geopotential height[J]. Meteorological Science and Technology, 2017, 45(2):307-312 (in Chinese).
[9]
陈希湘, 朱嵘涛, 高璐, 等. 一种高精度大气压力和温度无线监测系统[J]. 现代电子技术, 2019, 42(22):35-38,43.
CHEN X X, ZHU R T, GAO L, et al. A high-precision wireless monitoring system for atmospheric pressure and temperature[J]. Modern Electronic Technology, 2019, 42(22):35-38,43 (in Chinese).
[10]
胡起, 徐新禹, 赵永奇, 等. 基于拉格朗日中值定理的航空重力异常向下延拓方法研究[J]. 大地测量与地球动力学, 2021, 41(1):95-100.
HU Q, XU X Y, ZHAO Y Q, et al. Research on the downward continuation method of airborne gravity anomalies based on the Lagrange mean value theorem[J]. Geodesy and Geodynamics, 2021, 41(1):95-100 (in Chinese).
[11]
马霓. LTE-UMTS长期演进理论与实践[M]. 北京: 人民邮电出版社, 2009.
MA N. Long term Evolution Theory and Practice of LTE-UMTS[M]. Beijing: People's Posts and Telecommunications Press, 2009 (in Chinese).
[12]
张元斌. 物联网通信技术[M]. 西安: 西南交通大学出版社, 2018.
ZHANG Y B. Internet of Things Communication Technology[M]. Xi'an: Southwest Jiaotong University Press, 2018 (in Chinese).
[13]
侯万万. 基于MQTT的边缘智能计算动态感知调度策略的研究[D]. 北京: 北京工业大学, 2020.
HOU W W. Research on Dynamic Perception Scheduling Strategy for Edge Intelligent Computing Based on MQTT[D]. Beijing: Beijing University of Technology, 2020 (in Chinese).
[14]
刘升, 肖争, 赵钟炎, 等. 一种气压型跳伞高度计温度修正方法[P].中国专利,CN112857273A. 2021-05-28.
LIU SH, XIAO ZH, ZHAO ZH Y, et al. A temperature correction method for a pneumatic skydiving altimeter[P].Chinese Patent,CN112857273A. 2021-05-28 (in Chinese).

基金

山西省平台基地和人才专项-制造业能源管理信息化平台项目(201805D211023)

编辑: 薛士然
PDF(951 KB)

Accesses

Citation

Detail

段落导航
相关文章

/