NLDMOS器件单粒子效应及Nbuffer加固

杨强, 葛超洋, 李燕妃, 谢儒彬, 洪根深

集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (3) : 13-18.

PDF(7527 KB)
PDF(7527 KB)
集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (3) : 13-18. DOI: 10.20193/j.ices2097-4191.2024.03.003
航天集成电路研究专栏

NLDMOS器件单粒子效应及Nbuffer加固

作者信息 +

Single-event effect and Nbuffer hardening for NLDMOS device

Author information +
文章历史 +

摘要

提出了一种漂移区具有Nbuffer结构的N型横向扩散金属氧化物半导体(NLDMOS)结构,以提高器件抗单粒子烧毁(single-event burnout,SEB)能力。通过TCAD仿真验证了该结构的电学和抗单粒子特征。在不改变器件性能的前提下,18 V NLDMOS SEB触发电压由22 V提高到32 V,达到理论最大值,即器件雪崩击穿电压。具有Nbuffer结构的NLDMOS器件可以抑制单粒子入射使得器件寄生三极管开启时的峰值电场转移,避免器件雪崩击穿而导致SEB。此外,对于18~60 V NLDMOS器件的SEB加固,Nbuffer结构依然适用。

Abstract

A single-event burnout (SEB) hardened design based on N-type lateral double-diffused metal-oxide-silicon (NLDMOS) devices with a Nbuffer layer is proposed in this paper.The electrical and single-event characteristics of NLDMOS is verified by TCAD simulation.Without changing the device performance,the 18 V NLDMOS SEB trigger voltage increases from 22 V to 32 V,reaching the theoretical maximum,which is the avalanche breakdown voltage of the device.The NLDMOS device with an Nbuffer structure can suppress the peak electric field transfer when the parasitic bipolar transistor is turned on due to single paricle incident,and avoid avalanche breakdown of the device causing SEB.Furthermore,Nbuffer is also suitable for SEB hardening of 18~60 V NLDMOS.

关键词

LDMOS / 单粒子烧毁 / Nbuffer / 抗辐射加固 / TCAD

Key words

LDMOS / single-event burnout / Nbuffer / radiation hardening / TCAD

引用本文

导出引用
杨强, 葛超洋, 李燕妃, . NLDMOS器件单粒子效应及Nbuffer加固[J]. 集成电路与嵌入式系统. 2024, 24(3): 13-18 https://doi.org/10.20193/j.ices2097-4191.2024.03.003
YANG Qiang, GE Chaoyang, LI Yanfei, et al. Single-event effect and Nbuffer hardening for NLDMOS device[J]. Integrated Circuits and Embedded Systems. 2024, 24(3): 13-18 https://doi.org/10.20193/j.ices2097-4191.2024.03.003
中图分类号: TN306 (可靠性及例行试验)   

参考文献

[1]
ZHU J, ZHANG Y, SUN W, et al. Noise Immunity and its Temperature Characteristics Study of the Capacitive-Loaded Level Shift Circuit for High Voltage Gate Drive IC[J]. IEEE Transactions on Industrial Electronics, 2018, 65(4):3027-3034.DOI:10.1109/TIE.2017.2750615.
[2]
QIAO M, LI Z, ZHANG B, et al. Realization of over 650V double RESURF LDMOS with HVI for high side gate drive IC[C]// 2006 8th International Conference on Solid-State and Integrated Circuit Technology Proceedings.IEEE, 2006:248-250.
[3]
FLEETWOOD D M. Evolution of total ionizing dose effects in MOS devices with Moore’s law scaling[J]. IEEE Transactions on Nuclear Science, 2017, 65(8):1465-1481.
[4]
PICKEL J C. Single-event effects rate prediction[J]. IEEE Transactions on Nuclear Science, 1996, 43(2):483-495.
[5]
MAREC R, CALVEL P, MÉLOTTE M. Methodology to predict the SEE rate in vertical MOSFET with deep charge collection[C]// QCA Days Conf.,Villigen,Switzerland, 2009.
[6]
PEYRE D, BINOIS C, MANGERET R, et al. Fluence effect on SEE response of power MOSFETs[J]. QCA Days, 2009.
[7]
廖聪湘, 徐海铭. 沟槽型VDMOS的重离子辐射失效研究[J]. 电子与封装, 2022, 22(8):80402.
LIAO C X, XU H M. Study on Heavy Ion Radiation Failure of Grooved VDMOS[J]. Electronics and Packaging, 2022, 22 (8):80402 (in Chinese).
[8]
JOHNSTON A H, SWIFT G M, MIYAHIRA T, et al. Breakdown of gate oxides during irradiation with heavy ions[J]. IEEE Transactions on Nuclear Science, 1998, 45(6):2500-2508.
[9]
师锐鑫, 周锌, 乔明, 等. SOI高压LDMOS单粒子烧毁效应机理及脉冲激光模拟研究[J]. 电子与封装, 2021, 21(11):110404.
SHI R X, ZHOU X, QIAO M, et al. Mechanism of Single Particle Burnout Effect in SOI High Voltage LDMOS and Pulse Laser Simulation[J]. Electronics and Packaging, 2021, 21(11):110404 (in Chinese).
[10]
LI Z, ZHANG Z, ZHANG B, et al. The radiation characteristics of partial SOI VDMOS[C]// 2008 International Conference on Communications,Circuits and Systems.IEEE, 2008:1361-1364.
[11]
WAN X, ZHOU W S, REN S, et al. SEB hardened power MOSFETs with high-K dielectrics[J]. IEEE Transactions on Nuclear Science, 2015, 62(6):2830-2836.
[12]
李燕妃, 吴建伟, 顾祥, 等. 30V NLDMOS结构优化及SEB能力提高[J]. 电子与封装, 2018, 18(10):36.
LI Y F, WU J W, GU X, et al. Optimization of 30V NLDMOS structure and improvement of SEB capability[J]. Electronics and Packaging, 2018, 18(10):36 (in Chinese).
[13]
LEI Y, FANG J, ZHANG Y, et al. Single-event burnout hardening evaluation with current and electric field redistribution of high voltage LDMOS transistors based on TCAD Simulations[J]. Microelectronics Journal, 2023(132):105692.
[14]
POON H C, GUMMEL H K, SCHARFETTER D L. High injection in epitaxial transistors[J]. IEEE Transactions on Electron Devices, 1969, 16(5):455-457.
[15]
SHRIVASTAVA M, GOSSNER H. A review on the ESD robustness of drain-extended MOS devices[J]. IEEE Transactions on Device and Materials Reliability, 2012, 12(4):615-625.
[16]
SHRIVASTAVA M, SCHNEIDER J, BAGHINI M S, et al. On the failure mechanism and current instabilities in RESURF type DeNMOS device under ESD conditions[C]// 2010 IEEE International Reliability Physics Symposium.IEEE, 2010:841-845.
[17]
AKAHANE M, JONISHI A, YAMAJI M, et al. A new level up shifter for HVICs with high noise tolerance[C]// 2014 International Power Electronics Conference (IPEC-Hiroshima 2014-ECCE ASIA).IEEE, 2014:2302-2309.
[18]
DODD P E, SHANEYFELT M R, DRAPER B L, et al. Development of a radiation-hardened lateral power MOSFET for POL applications[J]. IEEE Transactions on Nuclear Science, 2009, 56(6):3456-3462.
[19]
SICONOLFI S, HUBERT G, ARTOLA L, et al. A physical prediction model issued from TCAD investigations for single event burnout in power MOSFETs[C]// 2013 14th European Conference on Radiation and Its Effects on Components and Systems (RADECS).IEEE, 2013:1-4.
[20]
WITULSKI A F, BALL D R, GALLOWAY K F, et al. Single-event burnout mechanisms in SiC power MOSFETs[J]. IEEE Transactions on Nuclear Science, 2018, 65(8):1951-1955.

编辑: 薛士然
PDF(7527 KB)

Accesses

Citation

Detail

段落导航
相关文章

/