一种优化的RFID室内定位算法

郑春达

集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (3) : 46-50.

PDF(987 KB)
PDF(987 KB)
集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (3) : 46-50. DOI: 10.20193/j.ices2097-4191.2024.03.009
研究论文

一种优化的RFID室内定位算法

作者信息 +

Indoor positioning algorithm based on RFID technology

Author information +
文章历史 +

摘要

射频识别技术已在物流、库存管理等领域广泛应用,但在室内定位应用中仍存在定位精度不高、稳定性差等问题。为了提高定位的精度和稳定性,研究中采用扩展卡尔曼滤波算法、无迹卡尔曼滤波算法以及结合UKF和分段的UKF-RTS算法。为了进一步优化RFID定位精度,引入EKF、UKF和UKF-RTS算法,UKF方法的最大误差约为0.42 m。但是,UKF-RTS的最大精度可以降低到0.26 m左右。UKF-RTS算法的误差最小,定位精度相比于EKF算法提高了48%,相比于UKF算法提高了25%。尤其在处理运动状态变化时,UKF-RTS表现优异,为RFID室内定位技术的发展提供了新的研究方向。

Abstract

Radio frequency identification technology has been widely applied in fields such as logistics and inventory management,but there are still problems such as low positioning accuracy and poor stability in indoor positioning applications.In order to improve the accuracy and stability of positioning,the extended Kalman Filter algorithm,unscented Kalman Filter algorithm and UKF-RTS algorithm combining UKF and Rauch Tung Streebel (RTS) are used in the study.In order to optimize the accuracy of RFID positioning,the EKF,UKF and UKF-RTS algorithms are introduced.The maximum error of the UKF method is about 0.42 m.However,the maximum accuracy of UKF-RTS can be reduced to around 0.26 m.The UKF-RTS algorithm has the smallest error and improves positioning accuracy by 48% compared to the EKF algorithm and 25% compared to the UKF algorithm.Especially when dealing with changes in motion status,UKF-RTS performs well and is expected to provide new research directions for the development of RFID indoor positioning technology.

关键词

室内定位 / RFID / 物联网 / 电子标签

Key words

indoor positioning / RFID / Internet of Things / electronic label

引用本文

导出引用
郑春达. 一种优化的RFID室内定位算法[J]. 集成电路与嵌入式系统. 2024, 24(3): 46-50 https://doi.org/10.20193/j.ices2097-4191.2024.03.009
ZHENG Chunda. Indoor positioning algorithm based on RFID technology[J]. Integrated Circuits and Embedded Systems. 2024, 24(3): 46-50 https://doi.org/10.20193/j.ices2097-4191.2024.03.009
中图分类号: TV21 (水资源调2查与水利规划)   

参考文献

[1]
李丽, 郑嘉利, 罗文聪, 等. 基于近端策略优化的RFID室内定位算法[J]. 计算机科学, 2021, 48(4):274-281.
摘要
针对在动态射频识别(Radio Frequency Identification,RFID)室内定位环境中,传统的室内定位模型会随着定位目标数量的增加而导致定位误差增大、计算复杂度上升的问题,文中提出了一种基于近端策略优化(Proximal Policy Optimization,PPO)的RFID室内定位算法。该算法将室内定位过程看作马尔可夫决策过程,首先将动作评价与随机动作相结合,然后进一步最大化动作回报值,最后选择最优坐标值。其同时引入剪切概率比,首先将动作限制在一定范围内,交替使用采样后与采样前的新旧动作,然后使用随机梯度对多个时期的动作策略进行小批量更新,并使用评价网络对动作进行评估,最后通过训练得到PPO定位模型。该算法在有效减少定位误差、提高定位效率的同时,具备更快的收敛速度,特别是在处理大量定位目标时,可大大降低计算复杂度。实验结果表明,本文提出的算法与其他的RFID室内定位算法(如 Twin Delayed Deep Deterministic Policy Gradient(TD3),Deep Deterministic Policy Gradient(DDPG),Actor Critic using Kronecker-Factored Trust Region(ACKTR))相比,定位平均误差分别下降了36.361%,30.696%,28.167%,定位稳定性分别提高了46.691%,34.926%,16.911%,计算复杂度分别降低了84.782%7,70.213%,63.158%。
LI L, ZHENG J L, LUO W C, et al. RFID indoor positioning algorithm optimized based on near-end strategy[J]. Computer Science, 2021, 48(4):274-281 (in Chinese).
In the Radio Frequency Identification(RFID) dynamic indoor positioning environment,the positioning error and the computing complexity of traditional indoor positioning model will increase with the increase of the number of positioning targets.This paper proposes an RFID positioning algorithm based on Proximal Policy Optimization(PPO),which regards the positioning as Markov decision-making process.Firstly,the action evalution is combined with random action and the return of the action is then maximized to select the best coordinate value.Meanwhile,under the premise of limiting the action to a certain range,the algorithm introduces clipped probability ratios,using post-sample and pre-sample action alternatesly,then,with stochastic gradient ascent updates multiple epochs policy of minibatch and with the critic network evaluate the action.Finally,the PPO positioning model is obtained by training.This method can effectively reduce the positioning error and improve the positioning efficiency.At the same time,it has a faster convergence speed,especially when dealing with a large number of positioning targets,it can greatly reduce the computational complexity.Experiment results show that,compared with other RFID indoor positioning algorithms,such as Twin Delayed Deep Deterministic policy gradient(TD3),Deep Deterministic Policy Gradient(DDPG) and actor-critic using Kronecker-Factored Trust Region(ACKTR),the average positioning error of the proposed method decreases respectively by 36.361%,30.696% and 28.167%,the positioning stability improves by 46.691%,34.926% and 16.911%,and the computing complexity decreases respectively by 84.782%,70.213% and 63.158%.
[2]
黄凤英, 夏靖波. 超高频RFID不同信号特征参数的室内定位方法[J]. 福州大学学报(自然科学版), 2022, 50(1):39-46.
HUANG F Y, XIA J B. Indoor positioning method for different signal feature parameters of ultra-high frequency RFID[J]. Journal of Fuzhou University (Natural Science Edition), 2022, 50(1):39-46 (in Chinese).
[3]
张慧颖, 于海越, 陈玲玲. 基于反向学习策略的自适应花授粉接收信号强度指示室内可见光定位[J]. 中国激光, 2021, 48(1):0106001.
ZHANG H Y, YU H Y, CHEN L L. Adaptive indoor visible light localization based on reverse learning strategy for signal intensity indication of flower pollination reception[J]. China Laser, 2021, 48(1):0106001 (in Chinese).
[4]
郭学斌, 李长庚. 稀疏参考点下的室内定位方法[J]. 信号处理, 2022, 38(5):1-13.
GUO X B, LI CH G. Indoor positioning method under sparse reference points[J]. Signal Processing, 2022, 38(5):1-13 (in Chinese).
[5]
韦冬雪. 基于距离权值填充的RFID室内定位算法[J]. 大众科技, 2019, 21(10):10-12.
WEI D X. RFID indoor positioning algorithm based on distance weight filling[J]. Volkswagen Technology, 2019, 21(10):10-12 (in Chinese).
[6]
许建国, 卢东方. RFID室内区域细化目标定位算法优化仿真[J]. 计算机仿真, 2021, 38(12):470-474.
XU J G, LU D F. Optimization and Simulation of RFID Indoor Area Refinement Target Location Algorithm[J]. Computer Simulation, 2021, 38(12):470-474 (in Chinese).
[7]
伍锡如, 黄榆媛, 王耀南. 改进ORB特征的机器人RGB-D SLAM算法[J]. 计算机工程与应用, 2020, 56(14):1-11.
WU X R, HUANG Y Y, WANG Y N. Robot RGB-D SLAM algorithm for improving ORB features[J]. Computer Engineering and Applications, 2020, 56(14):1-11 (in Chinese).
[8]
杨丽, 刘沁舒, 徐洁, 等. 基于SVRPSO-KF的RFID室内定位算法[J]. 移动通信, 2019, 43(2):78-80.
YANG L, LIU Q SH, XU J, et al. RFID indoor positioning algorithm based on SVRPSO-KF[J]. Mobile Communications, 2019, 43(2):78-80 (in Chinese).
[9]
谢良波, 李宇洋, 杨小龙, 等. 基于多频点相位距离/角度联合估计的RFID室内定位算法[J]. 仪器仪表学报, 2022, 43(7):112-122.
XIE L B, LI Y Y, YANG X L, et al. RFID indoor positioning algorithm based on joint estimation of multi frequency point phase distance/angle[J]. Journal of Instrumentation, 2022, 43(7):112-122 (in Chinese).
[10]
DUROC Y. From identification to sensing:RFID is one of the key technologies in the IoT field[J]. Sensors, 2022, 22(19):7521-7523.
Multispectral imaging (MSI) has become a new fast and non-destructive detection method in seed identification. Previous research has usually focused on single models in MSI data analysis, which always employed all features and increased the risk to efficiency and that of system cost. In this study, we developed a stacking ensemble learning (SEL) model for successfully identifying a single seed of sickle alfalfa (Medicago falcata), hybrid alfalfa (M. varia), and alfalfa (M. sativa). SEL adopted a three-layer structure, i.e., level 0 with principal component analysis (PCA), linear discriminant analysis (LDA), and quadratic discriminant analysis (QDA) as models of dimensionality reduction and feature extraction (DRFE); level 1 with support vector machine (SVM), multiple logistic regression (MLR), generalized linear models with elastic net regularization (GLMNET), and eXtreme Gradient Boosting (XGBoost) as basic learners; and level 3 with XGBoost as meta-learner. We confirmed that the values of overall accuracy, kappa, precision, sensitivity, specificity, and sensitivity in the SEL model were all significantly higher than those in basic models alone, based on both spectral features and a combination of morphological and spectral features. Furthermore, we also developed a feature filtering process and successfully selected 5 optimal features out of 33 ones, which corresponded to the contents of chlorophyll, anthocyanin, fat, and moisture in seeds. Our SEL model in MSI data analysis provided a new way for seed identification, and the feature filter process potentially could be used widely for development of a low-cost and narrow-channel sensor.
[11]
田清, 武斌, 王丽. 基于自适应权重的RFID室内定位算法[J]. 天津城建大学学报, 2020, 26(4):296-301.
TIAN Q, WU B, WANG L. RFID indoor positioning algorithm based on adaptive weights[J]. Journal of Tianjin Urban Construction University, 2020, 26(4):296-301 (in Chinese).
[12]
GUI L, XU S, XIAO F, et al. Non-Line-of-Sight Localization of Passive UHF RFID Tags in Smart Storage Systems[J]. IEEE Transactions on Mobile Computing, 2021, 21(10):3731-3743.
[13]
LIU M, WANG H, YANG Y, et al. RFID 3-D Indoor Localization for Tag and Tag-Free Target Based on Interference[J]. IEEE, 2019(10): 2879678.1-2879678.5.
[14]
UNHELKAR B, JOSHI S, SHARMA M, et al. Enhancing supply chain performance using RFID technology and decision support systems in the industry 4.0-A systematic literature review[J]. International Journal of Information Management Data Insights, 2022, 2(2):100084.
[15]
李川, 王荣海, 赵红军. 基于标签虚拟化的RFID室内RSSI无线定位算法[J]. 电子器件, 2020(6):43-44.
LI CH, WANG R H, ZHAO H J. RFID indoor RSSI wireless positioning algorithm based on tag virtualization[J]. Electronic Devices, 2020(6):43-44 (in Chinese).

基金

山东省自然科学规划项目(SD202371)

编辑: 薛士然
PDF(987 KB)

Accesses

Citation

Detail

段落导航
相关文章

/