基于ZYNQ的工业设备多参数实时采集系统

李天江, 刘宾, 苏新彦

集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (3) : 51-56.

PDF(1320 KB)
PDF(1320 KB)
集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (3) : 51-56. DOI: 10.20193/j.ices2097-4191.2024.03.010
研究论文

基于ZYNQ的工业设备多参数实时采集系统

作者信息 +

Industrial equipment multi-parameter real-time acquisition system based on ZYNQ

Author information +
文章历史 +

摘要

工业设备的状态监测对于确保生产安全和设备寿命至关重要,针对工业设备状态监测数据量较大且实时性高这一问题,设计了一套基于ZYNQ的工业设备多参数数据采集系统。该系统以ZYNQ7000系列SoC为核心,使用IEPE接口传感器与4~20 mA电流环路传输型传感器实现长线传输及降低干扰,设计了传感器信号调理电路、8通道高速A/D采集模块和DMA高速传输模块。振动台和恒温箱测试结果表明,该多参数数据采集系统能够有效获取工业设备状态数据并实时发送至上位机,从而帮助用户及时发现设备故障,并采取相应的维护措施,从而提高设备的可用性和生产效率。

Abstract

The monitoring of industrial equipment status is crucial for ensuring production safety and equipment lifespan.To address the challenge of dealing with large volumes of real-time data in industrial equipment status monitoring,a multi-parameter data acquisition system for industrial equipment based on ZYNQ has been designed.This system centers around the ZYNQ7000 series SoC,utilizing IEPE interface sensors and 4~20 mA current loop transmitters to achieve long-distance transmission and minimize interference.The system incorporates sensor signal conditioning circuits,an 8-channel high-speed A/D acquisition module,and a DMA high-speed transmission module.The vibration table and constant temperature box test results demonstrate that this multi-parameter data acquisition system effectively captures industrial equipment status data and transmits it in real-time to the host computer.This aids users in promptly detecting equipment malfunctions and implementing necessary maintenance measures,consequently enhancing equipment availability and production efficiency.

关键词

ZYNQ7000 / ADS8681 / KS943B10

Key words

ZYNQ7000 / ADS8681 / KS943B10

引用本文

导出引用
李天江, 刘宾, 苏新彦. 基于ZYNQ的工业设备多参数实时采集系统[J]. 集成电路与嵌入式系统. 2024, 24(3): 51-56 https://doi.org/10.20193/j.ices2097-4191.2024.03.010
LI Tianjiang, LIU Bin, SU Xinyan. Industrial equipment multi-parameter real-time acquisition system based on ZYNQ[J]. Integrated Circuits and Embedded Systems. 2024, 24(3): 51-56 https://doi.org/10.20193/j.ices2097-4191.2024.03.010
中图分类号: TN914 (通信系统(传输系统))   

参考文献

[1]
杨露霞, 温怀凤, 钱依祎, 等. 基于工业物联网的设备综合效率监测系统设计[J]. 自动化仪表, 2021, 42(3):94-97.
YANG L X, WEN H F, QIAN Y Y, et al. Design of Equipment Comprehensive Efficiency Monitoring System Based on Industrial Internet of Things[J]. Automation Instrumentation, 2021, 42(3):94-97 (in Chinese).
[2]
李锐. 基于SVM-Clara模型的机械设备状态监测方法[J]. 工业控制计算机, 2022, 35(1):47-49,51.
LI R. Mechanical Equipment Condition Monitoring Method Based on SVM Clara Model[J]. Industrial Control Computer, 2022, 35(1):47-49,51 (in Chinese).
[3]
田慧, 管雪元, 姜博文. 基于Zynq的数据采集系统的研究与设计[J]. 电子测量技术, 2019, 42(2):135-141.
TIAN H, GUAN X Y, JIANG B W. Research and Design of a Data Acquisition System Based on Zynq[J]. Electronic Measurement Technology, 2019, 42(2):135-141 (in Chinese).
[4]
杨诗安, 王子成. 基于Zynq-7000的数据采集与显示系统的设计[J]. 仪表技术与传感器, 2020(8):61-64.
YANG SH AN, WANG Z CH. Design of Data Acquisition and Display System Based on Zynq-7000[J]. Instrument Technology and Sensors, 2020(8):61-64 (in Chinese).
[5]
谢玲芳, 孟令军. 基于Zynq的振动信号采集及频谱分析[J]. 仪表技术与传感器, 2020(11):116-119,126.
XIE L F, MENG L J. Vibration signal acquisition and spectrum analysis based on Zynq[J]. Instrument Technology and Sensors, 2020(11):116-119,126 (in Chinese).
[6]
崔永俊, 郭峰. 多通道振动信号采集系统设计[J]. 仪表技术与传感器, 2022(4):75-79,95.
CUI Y J, GUO F. Design of multi-channel vibration signal acquisition system[J]. Instrument Technology and Sensors, 2022(4):75-79,95 (in Chinese).
[7]
安建波, 李波, 唐术凯, 等. 数控机床多通道高精度振动信号采集系统设计[J]. 现代制造工程, 2023(6):138-143.
AN J B, LI B, TANG SH K, et al. Design of a multi-channel high-precision vibration signal acquisition system for CNC machine tools[J]. Modern Manufacturing Engineering, 2023(6):138-143 (in Chinese).
[8]
张凯, 王黎明, 李伟, 等. ZYNQ7020的超声阵列测温系统设计[J]. 单片机与嵌入式系统应用, 2023, 23(1):67-70.
ZHANG K, WANG L M, LI W, et al. Design of Ultrasonic Array Temperature Measurement System for ZYNQ7020[J]. Application of Microcontrollers and Embedded Systems, 2023, 23(1):67-70 (in Chinese).
[9]
李冒金, 李剑, 刘宾, 等. 基于Zynq的大动态冲击波超压测试系统设计[J]. 国外电子测量技术, 2022, 41(1):51-56.
LI M J, LI J, LIU B, et al. Design of a Large Dynamic Shock Wave Superpressure Testing System Based on Zynq[J]. Foreign Electronic Measurement Technology, 2022, 41(1):51-56 (in Chinese).
[10]
麦超云, 黄传好, 刘子明. 基于ZYNQ的双ADC数据采集系统的设计与实现[J]. 现代电子技术, 2022, 45(16):35-39.
MAI CH Y, HUANG CH H, LIU Z M. Design and Implementation of a Dual ADC Data Acquisition System Based on ZYNQ[J]. Modern Electronic Technology, 2022, 45(16):35-39 (in Chinese).
[11]
张嘉璐, 段俊萍, 王淑琴. 基于FIFO缓存的数据混合编帧技术研究与实现[J]. 电子测量技术, 2020, 43(18):125-130.
ZHANG J L, DUAN J P, WANG SH Q. Research and Implementation of Data Hybrid Framing Technology Based on FIFO Cache[J]. Electronic Measurement Technology, 2020, 43(18):125-130 (in Chinese).
[12]
朱道山. 多通道DMA传输测控信号方法[J]. 单片机与嵌入式系统应用, 2023, 23(4):70-72.
ZHU D SH. Multi-channel DMA transmission measurement and control signal method[J]. Application of Microcontrollers and Embedded Systems, 2023, 23(4):70-72 (in Chinese).
[13]
杨长青, 陆丽, 周大伟, 等. 基于千兆以太网和LabVIEW的多通道数据采集系统[J]. 上海电机学院学报, 2023, 26(3):181-186.
YANG CH Q, LU L, ZHOU D W, et al. A multi-channel data acquisition system based on Gigabit Ethernet and LabVIEW[J]. Journal of Shanghai Institute of Electrical Engineering, 2023, 26(3):181-186 (in Chinese).
[14]
秦二强, 杨洁, 李磊, 等. 基于千兆以太网的多通道高速数据采集系统[J]. 核电子学与探测技术, 2014, 34(1):94-97.
QIN ER Q, YANG J, LI L, et al. A multi-channel high-speed data acquisition system based on Gigabit Ethernet[J]. Nuclear Electronics and Detection Technology, 2014, 34(1):94-97 (in Chinese).
[15]
郭晋, 王代华, 刘彬, 等. 基于千兆以太网的多通道冲击波超压系统设计[J]. 现代电子技术, 2022, 45(10):31-35.
GUO J, WANG D H, LIU B, et al. Design of multi-channel shock wave overpressure system based on gigabit Ethernet[J]. Modern Electronic Technology, 2022, 45(10):31-35 (in Chinese).

基金

高精度智能共晶焊接系统关键技术研究(202102150401007)

编辑: 薛士然
PDF(1320 KB)

Accesses

Citation

Detail

段落导航
相关文章

/