基于物联网的系统差动保护方法实现

崔益国

集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (3) : 57-61.

PDF(1299 KB)
PDF(1299 KB)
集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (3) : 57-61. DOI: 10.20193/j.ices2097-4191.2024.03.011
研究论文

基于物联网的系统差动保护方法实现

作者信息 +

Implementation of system differential protection method based on internet of things

Author information +
文章历史 +

摘要

介绍了对未来可再生电能传输与管理系统保护及运行改进,该系统使用固态变压器连接住宅交流和直流微电网到配电系统,并使用故障隔离设备隔离故障线路,提出一种电流差动保护方案来检测基于FREEDM的微电网网络中的故障,该方法使用相量测量单元进行数据同步并最小化测量误差,并采用物联网技术和Wi-Fi通信方案在设备间进行数据监测和互连。然后通过一个仿真FREEDM系统进行测试,在不同位置施加了不同类型和不同故障电阻的故障来证明所提出的保护方法在检测故障状态方面的有效性,利用安全性、可靠性和准确性指标对所提出方法的性能进行了调查。最后设计、实施和测试了FREEDM系统的原型,使用Proteus软件模拟器和实验室进行了测试。测试结果证明,所提出的保护方案以快速、可靠和准确的方式检测和隔离故障状态的效率,该保护方案对于所有故障实现了高达98.825%的准确率。

Abstract

This article introduces the protection and operational improvement of the Future Renewable Electric Energy Delivery and Management System (FREEDM),which uses solid-state transformers to connect residential AC and DC microgrids to the distribution system,and uses fault isolation equipment to isolate faulty lines.A current differential protection scheme is proposed to detect faults in the FREEDM based microgrid network,this method uses phasor measurement units for data synchronization and minimizes measurement errors,and uses IoT technology and Wi-Fi communication solutions for data monitoring and interconnection between devices.Then,a simulated FREEDM system is used for testing,and different types and fault resistances of faults are applied at different locations to demonstrate the effectiveness of the proposed protection method in detecting fault states.The performance of the proposed method is investigated using safety,reliability,and accuracy indicators.Finally,a prototype of the FREEDM system is designed,implemented,and tested using Proteus software simulator and laboratory.The results demonstrated the efficiency of the proposed protection scheme in detecting and isolating fault states in a fast,reliable,and accurate manner.In addition,the protection scheme achieved an accuracy of up to 98.825% for all faults.

关键词

差动保护方案 / 微电网 / 故障检测 / 未来可再生电能传输与管理系统

Key words

differential protection scheme / microgrid / fault detection / FREEDM system

引用本文

导出引用
崔益国. 基于物联网的系统差动保护方法实现[J]. 集成电路与嵌入式系统. 2024, 24(3): 57-61 https://doi.org/10.20193/j.ices2097-4191.2024.03.011
CUI Yiguo. Implementation of system differential protection method based on internet of things[J]. Integrated Circuits and Embedded Systems. 2024, 24(3): 57-61 https://doi.org/10.20193/j.ices2097-4191.2024.03.011
中图分类号: TP391   

参考文献

[1]
常乃超, 刘思旭, 余高旺, 等. 动态条件下同步相量测量装置的数字滤波器及计算优化[J]. 电力系统自动化, 2017, 41(20): 92-96.
CHANG N CH, LIU S X, YU G W, et al. Digital filters and computational optimization of synchronous phasor measurement devices under dynamic conditions[J]. Power System Automation, 2017, 41(20):92-96 (in Chinese).
[2]
田书欣, 李昆鹏, 魏书荣, 等. 基于同步相量测量装置的配电网安全态势感知方法[J]. 中国电机工程学报, 2021, 41(2):617-632.
TIAN SH X, LI K P, WEI SH R, et al. A method for perceiving the security situation of distribution networks based on synchronous phasor measurement devices[J]. Proceedings of the CSEE, 2021, 41(2):617-632 (in Chinese).
[3]
李漳. 直流输电系统保护技术探讨[J]. 大众用电, 2022, 37(6):43-44.
LI ZH. Exploration of Protection Technology for DC Transmission Systems[J]. Popular Utilization of Electricity, 2022, 37(6):43-44 (in Chinese).
[4]
马成鹏. 自取能一体化故障隔离装置的研制及其应用[J]. 电子元器件与信息技术, 2019, 3(12):104-105.
MA CH P. The development and application of a self powered integrated fault isolation device[J]. Electronic Components and Information Technology, 2019, 3(12):104-105 (in Chinese).
[5]
刘金辉, 张明锐, 金鑫. 应用于新型微网FREEDM的固态变压器研究[J]. 电气自动化, 2010, 32(6): 48-50,53.
LIU J H, ZHANG M R, JIN X. Research on solid-state transformers applied to novel microgrid FREEDM[J]. Electrical Automation, 2010, 32(6):48-50,53 (in Chinese).
[6]
张明锐, 刘金辉, 金鑫. FREEDM微型电网及其继电保护研究[J]. 电力系统保护与控制, 2011, 39(7):95-99,104.
ZHANG M R, LIU J H, JIN X. Research on FREEDM Microgrid and Its Relay Protection[J]. Power System Protection and Control, 2011, 39(7):95-99,104 (in Chinese).
[7]
李国军, 曹瀚元. 直流微电网电流差动保护研究[J]. 电子设计工程, 2019, 27(20):128-132.
LI G J, CAO H Y. Research on Current Differential Protection in DC Microgrids[J]. International Electronic Elements, 2019, 27(20):128-132 (in Chinese).
[8]
王旭蕊, 孟显, 季名扬, 等. 序列号同步下配电网5G通信的传输[J]. 单片机与嵌入式系统应用, 2022, 22(10):25-28.
WANG X R, MENG X, JI M Y, et al. Transmission of 5G communication in distribution networks under serial number synchronization[J]. Microcontroller and Embedded Systems, 2022, 22(10):25-28 (in Chinese).
[9]
倪喜军. 高压SiC器件在FREEDM系统中的应用[J]. 电源学报, 2016, 14(4):139-146.
摘要
碳化硅SiC(silicon carbide)是目前最为成熟的宽禁带半导体材料之一,在高压、高温、高频等领域,碳化硅器件的研究和应用已成为当前的研究热点。针对碳化硅器件目前的生产使用状况,简述了与碳化硅主要生产商CREE紧密合作的FREEDM中心的研究情况,重点分析了高压SiC MOSFET,IGBT,ETO,JFET在SST(Solid State Transformer)和FID(Fault Isolation Device)中的应用。针对各类器件本身的特性,FREEDM中心有针对性的选择了相关应用领域,并开发了多代SST和FID的拓扑,许多重要的研究成果引领了全球高压SiC器件的研究趋势。
NI X J. The application of high-voltage SiC devices in FREEDM systems[J]. Journal of Power Supply, 2016, 14(4):139-146 (in Chinese).
[10]
ABOELEZZ A M, SEDHOM B E, ELSAADAWI M M. Intelligent distance relay based on IEC 61850 for DC zonal shipboard microgrid protection[C]// proceedings of the 2022 Second International Conference on Power,Control and Computing Technologies (ICPC2T),2022.
[11]
ABOELEZZ A M, SEDHOM B E, EL-SAADAWI M M. Pilot distance protection scheme for DC zonal shipboard microgrid[C]// proceedings of the 2021 4th International Symposium on Advanced Electrical and Communication Technologies (ISAECT), 2021.
[12]
SHARMA N. Novel Directional Protection Scheme for the FREEDM Smart Grid System[D]. Arizona State University, 2015.
[13]
HOSSAIN M, LEEVONGWAT I, RASTGOUFARD P. Design and testing of a bus differential protection scheme using partial operating current (POC) algorithm[J]. Electric Power Systems Research, 2018, 157:29-38.

基金

国家自然科学基金项目(61602531)

编辑: 薛士然
PDF(1299 KB)

Accesses

Citation

Detail

段落导航
相关文章

/