硅基光电探测器空间辐射效应研究进展

傅婧, 付晓君, 魏佳男, 张培健, 郭安然

集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (3) : 6-12.

PDF(8647 KB)
PDF(8647 KB)
集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (3) : 6-12. DOI: 10.20193/j.ices2097-4191.2024.03.002
航天集成电路研究专栏

硅基光电探测器空间辐射效应研究进展

作者信息 +

Advance in space radiation effects of silicon photodetectors

Author information +
文章历史 +

摘要

硅基光电子技术结合了高集成度的大规模集成电路制造技术与光电子芯片的大带宽、高速率等优势,推动硅基光电器件在高能物理实验、医学影像和高能粒子碰撞器等领域的广泛应用。然而,应用于空间环境和医疗探测器的光电探测器在运行周期中预计会受到~1012 particles/cm2的累积注量,而应用于大型粒子对撞机的新型探测器则要经受~1014 particles/cm2的辐射注量。本文详细阐述了硅基光电探测器的空间辐射效应研究现状,主要包括不同粒子辐照后硅基光电二极管、雪崩光电二极管、单光子探测器以及光电倍增管等主流光电探测器的辐射效应研究进展。研究结果表明,探测器抗电离总剂量性能较好,位移损伤是导致其关键性能参数退化的主要原因,由于工作原理差异,各类器件在辐射环境中表现出不同退化行为和作用机理。

Abstract

Silicon-based optoelectronic technology combines the advantages of high integration of large-scale IC manufacturing technology with the advantages of large bandwidth,high speed ability of optoelectronic chips,and promotes the wide application of silicon-based optoelectronic devices in high energy physics experiments,medical imaging and high energy particle colliders.However,photodetectors used in space environment and medical detectors are expected to be subjected to a cumulative fluences of ~1012 particles/cm2 during their operating cycle,while detectors used in large particle colliders are expected to a radiation fluences of ~1014 particles/cm2.In this paper,the advance in space radiation effects of Si-based photodetectors is described in detail,including the radiation effects of Si-based photodiodes,avalanche photodiodes,single photon detectors and photomultiplier after irradiation by different particles.The research results show that the hardness of total ionizing dose for the detector is good,and the displacement damage is the main reason for the degradation of detectors’ key parameters.Due to the difference in working principle,all kinds of devices show different degradation behavior and degradation mechanism in the space radiation.

关键词

硅基光电探测器 / 空间辐射 / 电离总剂量效应 / 位移效应 / 单粒子效应

Key words

silicon photodetectors / space radiation / total ionizing dose effect / displacement damage effect / single event effects

引用本文

导出引用
傅婧, 付晓君, 魏佳男, . 硅基光电探测器空间辐射效应研究进展[J]. 集成电路与嵌入式系统. 2024, 24(3): 6-12 https://doi.org/10.20193/j.ices2097-4191.2024.03.002
FU Jing, FU Xiaojun, WEI Jianan, et al. Advance in space radiation effects of silicon photodetectors[J]. Integrated Circuits and Embedded Systems. 2024, 24(3): 6-12 https://doi.org/10.20193/j.ices2097-4191.2024.03.002
中图分类号: TN215 (红外探测、红外探测器)   

参考文献

[1]
周悦, 胡志远, 毕大炜, 等. 硅基光电子器件的辐射效应研究进展[J]. 物理学报, 2019, 68(20):204-206.
ZHOU Y, HU ZH Y, BI D W, et al. Research progress on radiation effects of silicon-based optoelectronic devices[J]. Acta Physica Sinica, 2019, 68(20):204-206 (in Chinese).
[2]
NIKOLIĆ D, VASIC A, FETAHOVIC I, et al. Photodiode behavior in radiation environment[J]. Scientific Publications of the State University of Novi Pazar Series A, 2011, 3(1):27-34.
[3]
HOFFMAN G B, GEHL M, MARTINEZ N J, et al. The Effect of Gamma Radiation Exposure on Active Silicon Photonic Device Performance Metrics[J]. IEEE Transactions on Nuclear Science, 2019, 66(5):801-809.
[4]
MOSCATELLI F, PASSERI D, MOROZZI A, et al. Effects of interface donor trap states on isolation properties of detectors operating at high-luminosity lhc[J]. IEEE Transactions on Nuclear Science, 2017, 64(8):2259-2267.
[5]
MOSCATELLI F, MOROZZI A, PASSERI D, et al. Analysis of surface radiation damage effects at hl-lhc fluences: Comparison of different technology options[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers,Detectors and Associated Equipment, 2019, 924:198-202.
[6]
MOSCATELLI F, MOROZZI A, PASSERI D, et al. Measurements and simulations of surface radiation damage effects on ifx and hpk test structures[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers,Detectors and Associated Equipment, 2020, 958: 162794.
[7]
PASSERI D, MOSCATELLI F, MOROZZI A, et al. Modeling of radiation damage effects in silicon detectors at high fluences hl-lhc with sentaurus tcad[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 824:443-445.
[8]
KASAP S O, CAPPER P. Springer handbook of electronic and photonic materials: volume 11[M]. Springer, 2006.
[9]
M MOLL. Radiation Damage in Silicon Particle Detectors: Microscopic Defects and Macroscopic Properties[D]. Hamburg University,1999.
[10]
EISAMAN M D, FAN J, MIGDALL A, et al. Invited Review Article: Single-photon sources and detectors[J]. Review of Scientific Instruments, 2011, 82(7):202-134.DOI:10.1063/1.3610677.
[11]
ADOLPHI R. The CMS experiment at the CERN LHC[J]. Springer Berlin Heidelberg, 2012.DOI:10.1007/978-3-642-24562-6_2.
[12]
ANTUNOVIC Z, BRITVITCH I, DEITERS K, et al. Radiation hard avalanche photodiodes for the CMS detector[J]. Nuclear Instruments & Methods in Physics Research A, 2005, 537(1/2):379-382.DOI:10.1016/j.nima.2004.08.047.
[13]
KIRN T, SCHWENKE J, RENKER D, et al. Wavelength dependence of avalanche photodiode (APD) parameters[J]. Nuclear Instruments & Methods in Physics Research, 1999, 387(1):202-204.DOI:10.1016/S0168-9002(96)00990-4.
[14]
VEERAPPAN C, CHARBON E. A Low Dark Count p-i-n Diode Based SPAD in CMOS Technology[J]. IEEE Transactions on Electron Devices, 2015, 63(1):65-71.DOI:10.1109/TED.2015.2475355.
[15]
WU M L, RIPICCINI E, KIZILKAN E, et al. Radiation Hardness Study of Single-Photon Avalanche Diode for Space and High Energy Physics Applications[J]. Sensors, 2022(22):2919.
[16]
MALHERBE V, PAOLI S D, MAMDY B, et al. Displacement Damage Characterization of CMOS Single-Photon Avalanche Diodes:Alpha-Particle and Fast-Neutron Measurements[J]. IEEE Transactions on Nuclear Science, 2021(99): 1.DOI:10.1109/TNS.2021.3071171.
[17]
PROCHAZKA I, KRAL L, HAMAL K, et al. Photon counting timing uniformity-unique feature of the silicon avalanche photodiodes K14[J]. Journal of Modern Optics, 2007(54):141-149.
[18]
PROCHAZKA I, HAMAL K, KRAL L. Single photon counting module for space applications[J]. Journal of Modern Optics, 2007(54):151-161.
[19]
KODET J, PROCHAZKA I, BLAZEJ J, et al. Single photon avalanche diode radiation tests[J]. Nuclear Instruments & Methods in Physics Research, 2012, 695:309-312.DOI:10.1016/j.nima.2011.11.001.
[20]
T MATSUBARA, H TANAKA, K NITTA, et al. Radiation damage of MPPC by gamma-ray irradiation with Co-60[J]. Pos Proceedings of Science, 2007.
[21]
PAGANO R, LOMBARDO S, PALUMBO F, et al. Radiation hardness of silicon photomultipliers under 60Co γ-ray irradiation[J]. Nuclear Inst & Methods in Physics Research A, 2014,767 (dec.11):347-352.DOI:10.1016/j.nima.2014.08.028.
[22]
GARUTTI E, KLANNER R, LOMIDZE D, et al. Characterisation of highly radiation-damaged SiPMs using current measurements. 2017[2024-02-18].DOI:10.48550/arXiv.1709.05226.
[23]
T TSANG, T RAO, S STOLL, et al. Neutron radiation damage and recovery studies of SiPMs[C]// IEEE Nuclear Science Symposium & Medical Imaging Conference, 2018.
[24]
M Yu Barnyakov, T Frach, S A Kononov, I Kuyanov, et al. Radiation hardness test of the Philips Digital Photon Counter with proton beam[J]. Nucl. Instrum. Methods, 2013(A824): 83-84.

基金

国家自然科学基金项目(12305311)
国家自然科学基金项目(12105252)
国家重点研发计划项目(2022YFF0708000)

编辑: 薛士然
PDF(8647 KB)

Accesses

Citation

Detail

段落导航
相关文章

/