LoRa图传系统在仪表读数识别中的研究

周金龙

集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (3) : 72-76.

PDF(1393 KB)
PDF(1393 KB)
集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (3) : 72-76. DOI: 10.20193/j.ices2097-4191.2024.03.014
研究论文

LoRa图传系统在仪表读数识别中的研究

作者信息 +

Research on image transmission system by LoRa in instrument recognition

Author information +
文章历史 +

摘要

随着人工智能技术的普及应用,在仪表读数识别领域,低成本的解决方案也逐步得到了应用。目前,市面上有基于NB技术对回传图片进行识别的水表读头,但依赖运营商NB网络覆盖和信号质量,只有大城市和县城主要城区才覆盖得较好,在市郊和乡镇农村地区很少有网络覆盖。基于STM32WLE5芯片设计了一套低成本终端采集仪表盘面照片,通过LoRa技术回传图片信息到用户服务平台进行AI识别读数的系统,可以解决NB网络覆盖不到地区的场景应用问题,在市场上具有互补,甚至替代作用。实验结果表明,LoRa图传稳定可靠,满足图像识别的质量要求。

Abstract

With the widespread application of artificial intelligence technology,low-cost solutions in the field of instrument reading recognition have gradually been applied.At present,there are water meter reading heads based on NB technology for image recognition on the market,but they rely on the operator's NB network coverage and signal quality.Only large cities and major urban areas in counties have good coverage,and there is little network coverage in suburban and rural areas.In the paper,a low-cost terminal is designed based on the STM32WLE5 chip to collect dashboard photos.Through LoRa technology,the image information is transmitted back to the user service platform for AI recognition and reading.This system can solve the problem of NB network not covering regions,and has complementary or even substitutive effects in the market.The experimental results show that LoRa image transmission is stable and reliable,meeting the quality requirements of image recognition.

关键词

STM32 / LoRa / OV2640 / 人工智能 / 物联网

Key words

STM32 / LoRa / OV2640 / AI / IoT

引用本文

导出引用
周金龙. LoRa图传系统在仪表读数识别中的研究[J]. 集成电路与嵌入式系统. 2024, 24(3): 72-76 https://doi.org/10.20193/j.ices2097-4191.2024.03.014
ZHOU Jinlong. Research on image transmission system by LoRa in instrument recognition[J]. Integrated Circuits and Embedded Systems. 2024, 24(3): 72-76 https://doi.org/10.20193/j.ices2097-4191.2024.03.014
中图分类号: TN99    TP399   

参考文献

[1]
陈章韶, 毕盛, 董敏. 基于轻量级卷积神经网络的水表读数自动识别系统[J]. 单片机与嵌入式系统应用, 2021, 21(12):12-15.
CHEN ZH SH, BI SH, DONG M. Water meter reading automatic recognition system based on lightweight convolutional neural network[J]. Microcontrollers and embedded systems, 2021, 21(12):12-15 (in Chinese).
[2]
意法半导体. STM32WLE5CB芯片手册[EB/OL].(2022-12) [2023-12]. https://www.st.com/zh/microcontrollers-microprocessors/stm32wle5cb.html.
ST. STM32WLE5CB Chip Manual[EB/OL].(2022-12) [2023-12]. https://www.st.com/zh/microcontrollers-microprocessors/stm32wle5cb.html (in Chinese).
[3]
意法半导体扩大支持LoRa的STM32WL系统芯片的选择范围[J]. 单片机与嵌入式系统应用, 2020, 20(10):94.
ST Semiconductor Expands the Selection Range of STM32WL System Chips Supporting LoRa[J]. Microcontrollers and Embedded Systems, 2020, 20(10):94 (in Chinese).
[4]
陈飞跃, 张丽红, 王泽旭. 基于TMS320F28016的OV2640摄像采集设计[J]. 科技创新与应用, 2017(1):53.
CHEN F Y, ZHANG L H, WANG Z X. Design of OV2640 camera acquisition based on TMS320F28016[J]. Science and Technology Innovation and Application, 2017(1):53 (in Chinese).
[5]
黄健, 罗国平, 杜丽君. 基于 STM32F407 平台 OV2640 驱动程序设计[J]. 通讯世界, 2015(19).
HUANG J, LUO G P, DU L J. Design of OV2640 Driver Program Based on STM32F407 Platform[J]. Communication World, 2015(19) (in Chinese).
[6]
任卫华, 姜海礁, 金龙, 等. 一种基于LoRaWAN的上行数据持续可靠传输方法[P]. CN116266959A,2023-06-20.
REN W H, JIANG H J, JIN L, et al. A sustained and reliable uplink data transmission method based on LoRaWAN[P]. CN116266959A,2023-06-20 (in Chinese).
[7]
金龙, 姜海礁, 任卫华, 等. 一种LPWAN物联网的大数据包可靠传输方法及系统[P]. CN116318565A,2023-06-23.
JIN L, JIANG H J, REN W H, et al. A reliable transmission method and system for big data packets in the LPWAN Internet of Things[P]. CN116318565A,2023-06-23 (in Chinese).

编辑: 薛士然
PDF(1393 KB)

Accesses

Citation

Detail

段落导航
相关文章

/