PDF(1493 KB)
PDF(1493 KB)
PDF(1493 KB)
基于光学跟踪和运动估算法的VR实时姿态感知软件设计
Design of VR real-time attitude sensing software based on optical tracking and motion estimation algorithm
人体骨骼数据容易受到环境中光线等干扰因素的影响,使得软件的姿态感知结果的均值平均精度(mAP)较高。因此,设计了一种基于光学跟踪和运动估计算法的新型VR头显实时姿态感知软件。以光学跟踪设备为核心组成测量系统,实时获得位姿测量数据,并经过误差校正后得到准确的姿态信息。借助于OpenPose网络检测出人体骨骼关键点,并应用引入提前终止策略的运动估计算法对实时姿态图像进行不断搜索,在忽略干扰因素的情况下找到最佳匹配点,以此来反映运动矢量分布位置,识别出当前人体姿态。最后,依托于多层感知机网络实现姿态分类,作为最终输出的实时姿态感知结果。测试结果表明,结合光学跟踪和运动估计算法的软件应用后,得出姿态感知结果的mAP值保持在0.95以上,满足了VR头显实时姿态感知要求。
Human bone data is susceptible to interference factors such as light in the environment,resulting in high mean average accuracy (mAP) of the software's posture perception results.Therefore,a novel VR head display real-time attitude perception software based on optical tracking and motion estimation algorithms is proposed.The measurement system is composed of optical tracking equipment as the core to obtain real-time pose measurement data,and accurate pose information is obtained after error correction.By utilizing the OpenPose network to detect key points of human bones,and applying a motion estimation algorithm that introduces an early termination strategy to continuously search for real-time pose images,the best matching point is found while ignoring interference factors,in order to reflect the distribution position of motion vectors and recognize the current human pose.Finally,relying on a multi-layer perceptron network to achieve attitude classification,as the final output of temporal attitude perception results.The test results show that after combining optical tracking and motion estimation algorithms,the mAP value of the attitude perception results remains above 0.95,meeting the real-time attitude perception requirements of VR head display.
光学跟踪 / 运动估计 / 提前终止策略 / 位姿测量 / 姿态感知
optical tracking / motion estimation / early termination strategy / posture measurement / attitude perception
| [1] |
尹继尧, 周琳, 李强, 等. 基于轻量化二维人体姿态估计的小样本动作识别算法[J]. 广西科学, 2022, 29(4):700-707.
|
| [2] |
周佳裕, 蔡晋辉, 章乐, 等. 接触式交互感知的人体三维坐姿姿态估计[J]. 仪器仪表学报, 2022, 43(11):132-141.
|
| [3] |
付齐, 谢凯, 文畅, 等. 遮挡与几何感知模型下的头部姿态估计方法[J]. 计算机工程, 2023, 49(3):296-303,311.
Head posture estimation plays a crucial role in human-computer interaction and assisted driving.However, lighting variations, partial occlusion, and differences in face appearances degrade the accuracy of head pose estimation.Therefore, in this study, a head pose estimation method based on occlusion and geometric perception models is proposed.During the pre-processing phase, a Multi-Task Convolutional Neural Networks(MTCNN) is used for face detection to reduce the interference of the background environment, and then, an image enhancement operation is performed on the captured image to reduce the effect of illumination changes.A facial occlusion perception network is designed to perceive the occluded area of the face to extract unobstructed facial features with rich information.The posture and position of each part of the face are encoded using the Stacked Capsule Autoencoder(SCAE) to completely utilize the geometric information of the face, so that geometric relationship of each part of the face is obtained.The experimental results based on the AFLW2000 and BIWI datasets indicate that the Mean Absolute Error (MAE) values of the proposed method are 3.91 and 3.55, respectively, which can effectively help improve the accuracy of head pose estimation and its robustness in complex environments.
|
| [4] |
郑毅, 宋贺良, 王克强. 基于SVM的人体姿态识别技术研究[J]. 传感技术学报, 2023, 36(03):462-468.
|
| [5] |
陶杰, 夏成宇. 基于激光传感器的高精度运动姿态实时识别[J]. 激光杂志, 2021, 42(4):76-80.
|
| [6] |
吉斌, 潘烨, 金小刚, 等. 用于视频流人体姿态估计的时空信息感知网络[J]. 计算机辅助设计与图形学学报, 2022, 34(2):189-197.
|
| [7] |
刘玉杰, 张敏杰, 李宗民, 等. 基于全局姿态感知的轻量级人体姿态估计[J]. 图学学报, 2022, 43(2):333-341.
|
| [8] |
常政威, 蒲维, 吴杰, 等. 一种基于姿态感知的电力人员穿戴识别残差网络[J]. 电讯技术, 2022, 62(1):31-38.
|
| [9] |
付苗苗, 沈红伟. 基于激光与视觉感知的机器人姿态自动控制研究[J]. 激光杂志, 2021, 42(5):138-142.
|
| [10] |
褚真, 米庆, 马伟, 等. 部位级遮挡感知的人体姿态估计[J]. 计算机研究与发展, 2022, 59(12):2760-2769.
|
/
| 〈 |
|
〉 |