
基于最小二乘法的三维TMR数字罗盘系统设计
Design of three-dimensional TMR digital compass system based on least squares method
针对市面上现有的三维数字罗盘在进行地磁场检测时极易受到外界磁场的干扰进而导致测量精度低的问题,设计了一款基于最小二乘法的三维TMR(隧道磁阻效应)数字罗盘系统。对其在现实中的误差特点开展研究,在由椭球拟合法处理校正后,运用了最小二乘法开展误差补偿,补偿前其方位角精度为4.18°,补偿后其方位角精度为0.46°,结果显而易见,在精度方面拔高了一个数量级,降低了三维数字罗盘系统的方位角误差。实验结果显示,最小二乘法可以极大地提高三维数字罗盘系统的精度,该方法具有较高的工程应用价值。
To resolve the issue concerning the susceptibility of the prevailing three-dimensional digital compasses in the market to external magnetic field interference during the detection of Earth's magnetic field,resulting in diminished measurement precision,a three-dimensional digital compass system employing the Tunnel Magnetoresistance (TMR) effect and grounded in the least squares method has been devised.The error characteristics of a three-dimensional digital compass in practical environments is studied.After being corrected by ellipsoidal fitting,the least squares method is used for error compensation.The azimuthal precision prior to compensation stood at 4.18°,whereas post-compensation,it reached 0.46°.This reflects a tenfold enhancement in accuracy,substantially mitigating azimuthal discrepancies within the three-dimensional digital compass.The empirical findings demonstrate that the utilization of the least squares approach substantially heightens the precision of three-dimensional digital compass systems,underscoring its substantial utility in engineering applications.In addition,given the high sensitivity characteristics of TMR sensors,they are extremely suitable for use in space,indicating that the system has extremely high application value.
椭球校正 / 最小二乘法 / 隧道磁阻效应 / 三维数字罗盘 / 方位角精度 {{custom_keyword}} /
ellipsoidal correction / least square method / tunnel magnetoresistance / three-dimensional digital compass / azimuth accuracy {{custom_keyword}} /
薛士然 {{custom_editor}},
图8 两种方法的补偿效果对比示意图Fig. 8 Comparison diagram of compensation effects between two methods |
表1 实验数据记录表Table 1 Experimental data record table |
理论值/° | 椭圆拟合法数据 | 最小二乘法数据 | ||
---|---|---|---|---|
补偿前 误差/° | 补偿后 误差/° | 补偿前 误差/° | 补偿后 误差/° | |
0 | -0.82 | -0.30 | -4.18 | 0.04 |
15 | -0.05 | -0.20 | -4.13 | -0.39 |
30 | 1.30 | 0.02 | -3.45 | -0.36 |
45 | 3.30 | 0.33 | -1.70 | 0.16 |
60 | 3.78 | 0.49 | -0.72 | 0.02 |
75 | 4.81 | 0.63 | 0.16 | -0.09 |
90 | 4.32 | 0.58 | 1.33 | 0.43 |
105 | 3.43 | 0.45 | 1.63 | 0.46 |
120 | 2.55 | 0.28 | 0.68 | -0.18 |
135 | 0.85 | 0.03 | -0.13 | -0.28 |
150 | -0.69 | -0.20 | -1.26 | -0.46 |
165 | -2.29 | -0.41 | -1.73 | -0.06 |
180 | -2.67 | -0.48 | -2.44 | -0.17 |
195 | -3.13 | -0.49 | -1.73 | 0.34 |
210 | -0.84 | -0.20 | -2.34 | -0.002 |
225 | 1.13 | 0.11 | -1.84 | 0.13 |
240 | 3.18 | 0.42 | -1.32 | 0.22 |
255 | 5.59 | 0.69 | -1.81 | -0.40 |
270 | 5.51 | 0.68 | -1.16 | -0.000 2 |
285 | 5.43 | 0.61 | -1.82 | -0.34 |
300 | 3.85 | 0.39 | -1.97 | 0.14 |
315 | 2.15 | 0.15 | -2.58 | 0.35 |
330 | 0.87 | -0.06 | -3.66 | 0.07 |
345 | -0.58 | -0.25 | -3.84 | 0.36 |
备注:“-”仅代表实际测试角度相对理论角度的方向。如:理论值为0°时,补偿前实际测试角度为0.82°,补偿前误差=理论值-补偿前实际测试值,即补偿前误差为-0.82°。 |
[1] |
邱丹, 倪玲. 磁航向系统中电子罗盘的误差补偿算法研究[J]. 电子制作, 2021(21):57-60,42.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
孙军亮. 基于单片机的二维电子罗盘设计[J]. 信息与电脑(理论版), 2022, 34(3):17-20.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
白雪, 姜庆, 刘有彬, 等. 基于磁电阻传感器的电子罗盘研制[J]. 磁性材料及器件, 2022, 53(3):86-91.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
龙振弘, 周凯. 基于磁阻传感器的电子罗盘设计[J]. 电子设计工程, 2023, 31(5):94-97.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
段国文, 杨迪, 吕辰. 三轴磁传感器在线误差补偿方法[J]. 传感器与微系统, 2023, 42(5):41-44.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |