一种基于FPGA的图像清晰度算法研究

段哲一, 李天冉, 李守业, 杨志荣, 胡茂海

集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (4) : 51-56.

PDF(1143 KB)
PDF(1143 KB)
集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (4) : 51-56. DOI: 10.20193/j.ices2097-4191.2024.04.009
研究论文

一种基于FPGA的图像清晰度算法研究

作者信息 +

Research on image clarity algorithm based on FPGA

Author information +
文章历史 +

摘要

为了能够对视频图像进行实时清晰度评价,基于Xilinx A-7型号FPGA芯片设计且实现了一种新的图像清晰度算法。首先,采用状态机设计OTSU算法计算图像的自适应阈值以分离边缘,然后应用并行处理和流水线实现改进的4方向Tenengrad梯度函数计算清晰度。实验结果表明,该设计可以在约66 ms内对640×480@30 fps格式视频图像清晰度进行评价,具有一定的灵敏度。

Abstract

In order to evaluate the real-time clarity of video images,a new image clarity algorithm is designed and implemented on Xilinx A-7 FPGA chip.Firstly,a state machine design OTSU algorithm is used to calculate the adaptive threshold of the image to separate edges.Secondly,parallel processing and pipeline implementation are applied to improve the computational clarity of the 4-direction Tenengrad gradient function.The experiment results indicate that the design can complete 640×480@30 fps evaluation of the clarity of video stream images in 66 ms,with a certain degree of sensitivity.

关键词

实时图像清晰度评价 / FPGA / OTSU / xc7A35TFTG256

Key words

real-time evaluation of image clarity / FPGA / OTSU / xc7A35TFTG256

引用本文

导出引用
段哲一, 李天冉, 李守业, . 一种基于FPGA的图像清晰度算法研究[J]. 集成电路与嵌入式系统. 2024, 24(4): 51-56 https://doi.org/10.20193/j.ices2097-4191.2024.04.009
DUAN Zheyi, LI Tianran, LI Shouye, et al. Research on image clarity algorithm based on FPGA[J]. Integrated Circuits and Embedded Systems. 2024, 24(4): 51-56 https://doi.org/10.20193/j.ices2097-4191.2024.04.009
中图分类号: TP391.4   

参考文献

[1]
李祚林, 李晓辉, 马灵玲, 等. 面向无参考图像的清晰度评价方法研究[J]. 遥感技术与应用, 2011, 26(2):239-246.
LI Z L, LI X H, MA L L, et al. Research of Definition Assessment Based on No-reference Digital Image Quality[J]. Remote Sensing Technology and Applications, 2011, 26(2):239-246. (in Chinese)
[2]
王一涵. 雾天图像增强方法研究[D]. 西安: 西安电子科技大学, 2013.
WANG Y H. Enhancement for Fog-degraded Images[D]. Xian: Xidian University, 2013. (in Chinese)
[3]
朱海辉. 夜间视频增强算法研究及硬件设计[D]哈尔滨: 哈尔滨工业大学, 2017.
ZHU H H. The Research on Night time Video Enhancement Algorithm and Hardware Design[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese)
[4]
尤玉虎, 刘通, 刘佳文. 基于图像处理的自动对焦技术综述[J]. 激光与红外, 2013, 43(2):132-136.
YOU Y H, LIU T, LIU J W. Survey of the Auto-focus Methods based on Image Processing[J]. Laser & Infrared, 2013, 43(2):132-136. (in Chinese)
[5]
杨艳艳. 基于图像处理的航空红外相机自动调焦技术研究[D]. 北京: 中国科学院大学, 2016.
YANG Y Y. Research on Technology of Automatic Focusing Based on Image Processing for Aerial Infrared Camera[D]. Beijing: University of Chinese Academy of Sciences, 2016. (in Chinese)
[6]
曾海飞, 韩昌佩, 李凯, 等. 改进的梯度阈值图像清晰度评价算法[J]. 激光与光电子学进展, 2021, 58(22):285-293.
ZENG H F, HAN CH P, LI K, et al. Improved Gradient Threshold Image Sharpness Evaluation Algorithm[J]. Laser & Optoelectronics, 2021, 58(22):285-293. (in Chinese)
[7]
林宜丙, 石守东, 孙书丹. 基于OTSU算法的FPGA实时绕距测量系统[J]. 电子技术应用, 2015, 41(7):15-18,22.
LIN Y B, SHI SH D, SUN SH D. The FPGA Real time Distance Measurement System Based on OTSU Algorithm[J]. Application of Electronic Technology, 2015, 41(7):15-18,22. (in Chinese)
[8]
金雪, 马卫红. 图像调焦过程的清晰度评价函数研究[J]. 光学仪器, 2012, 34(01):59-64.
JIN X, MA W H. Study on Image Definition Evaluation Function in Auto-focusing Process[J]. Optical Instruments, 2012, 34(1):59-64. (in Chinese)

编辑: 薛士然
PDF(1143 KB)

Accesses

Citation

Detail

段落导航
相关文章

/