基于单光子雪崩二极管的成像技术综述

王哲, 田娜, 杨旭, 冯鹏, 窦润江, 于双铭, 刘剑, 吴南健, 刘力源

集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (5) : 10-25.

PDF(44372 KB)
PDF(44372 KB)
集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (5) : 10-25. DOI: 10.20193/j.ices2097-4191.2024.05.002
CMOS图像传感器研究专栏

基于单光子雪崩二极管的成像技术综述

作者信息 +

Overview of imaging technology based on single photon avalanche diode

Author information +
文章历史 +

摘要

单光子成像技术涉及半导体工艺、光电器件以及集成电路设计等多个方面,基于单光子雪崩二极管的成像技术具有高动态二维灰度成像、高精度三维成像和荧光寿命成像能力,在安防监控、自动驾驶和生物医疗等领域具有广阔的应用前景。伴随着半导体工艺技术的飞速发展,单光子成像技术有望成为应用广泛的下一代视觉感知技术。本文对基于单光子雪崩二极管的成像技术进行了系统的介绍,包括单光子雪崩二极管器件、单光子成像涉及的关键电路以及二维灰度和时间分辨单光子图像传感器的最新研究进展。

Abstract

Single-photon imaging technology involves multiple aspects such as semiconductor processes,optoelectronic devices,and integrated circuit design.Based on single-photon avalanche diodes,single-photon imaging technology offers high dynamic two-dimensional grayscale imaging,high-precision three-dimensional imaging,and fluorescence lifetime imaging capabilities.It has significant application prospects in fields such as security surveillance,autonomous driving,and biomedicine.With the rapid development of semiconductor process technology,single-photon imaging technology is expected to become a widely used next-generation visual perception technology.This article provides a systematic introduction to imaging technology based on single-photon avalanche diodes,including the device structure of single-photon avalanche diodes,key circuits involved in single-photon imaging,and the latest research progress in gray scale and temporal resolution single-photon image sensors.

关键词

单光子雪崩二极管 / CMOS图像传感器 / 单光子成像 / 三维成像 / 荧光寿命成像

Key words

SPAD / CMOS image sensor / single photon imaging / 3D imaging / FLIM

引用本文

导出引用
王哲, 田娜, 杨旭, . 基于单光子雪崩二极管的成像技术综述[J]. 集成电路与嵌入式系统. 2024, 24(5): 10-25 https://doi.org/10.20193/j.ices2097-4191.2024.05.002
WANG Zhe, TIAN Na, YANG Xu, et al. Overview of imaging technology based on single photon avalanche diode[J]. Integrated Circuits and Embedded Systems. 2024, 24(5): 10-25 https://doi.org/10.20193/j.ices2097-4191.2024.05.002
中图分类号: TN4 (微电子学、集成电路(IC))   

参考文献

[1]
COVA S, LONGONI A, ANDREONI A. Towards picosecond resolution with single-photon avalanche diodes[J]. Review of Scientific Instruments, 1981, 52(3):408-412.
[2]
曹静. CMOS单光子TOF图像传感器关键技术研究[D]. 北京: 中国科学院大学, 2019.
CAO J. Research on Key Technology of TOF imaging sensor based on Single Photon Avalanche Diode[D]. Beijing: University of Chinese Academy of Sciences, 2019. (in Chinese)
[3]
FISHBURN MW. Fundamentals of CMOS Single-Photon Avalanche Diodes[J]. Delft University of Technology, 2012.DOI:10.4233/uuid:7ed6e57d-404e-4372-8053-6b0b5c7fa0fe.
[4]
PETER S, ALBERT JP T. Single-photon imaging[M]. Beilin: Springer, 2011.
[5]
曹静, 张钊, 祁楠, 等. 用于LiDAR的16×1列阵CMOS单光子TOF图像传感器[J]. ACTA PHOTONICA SINICA, 2019, 48(7):704001-1.
CAO J, ZHANG ZH, QI N, et al. A 16×1 Pixels 180nm CMOS SPAD based TOF Image Sensor for LiDAR Applications[J]. ACTA PHOTONICA SINICA, 2019, 48(7):704001-1. (in Chinese)
[6]
PELLEGRINI S, RAE B, PINGAULT A, et al. Industrialised SPAD in 40 nm technology[C]// 2017 IEEE International Electron Devices Meeting (IEDM).IEEE, 2017:16.5.1-16.5.4.
[7]
PARMESAN L, PELLEGRINI S, HENDERSON R. 3μm Pitch, 1μm Active Diameter SPAD Arrays in 130nm CMOS Imaging Technology[C]// International Image Sensor Workshop 2017, 2017.
[8]
HUANG L D, WU J Y, WANG J P, et al. Single-photon avalanche diodes in 0.18-μm high-voltage CMOS technology[J]. Optics express, 2017, 25(12):13333-13339.
We have designed and fabricated high-performance single-photon avalanche diodes (SPADs) by using 0.18-µm high-voltage CMOS technology. Without any technology customization, the SPADs have low dark-count rate, high photon-detection probability, low afterpulsing probability, and acceptable timing jitter and breakdown voltage. Our design provides a low-cost and high-performance SPAD for various applications.
[9]
GRAMUGLIA F, KESHAVARZIAN P, KIZILKAN E, et al. Engineering breakdown probability profile for PDP and DCR optimization in a SPAD fabricated in a standard 55 nm BCD process[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 28(2):1-10.
[10]
ITO K, OTAKE Y, KITANO Y, et al. A back illuminated 10μm spad pixel array comprising full trench isolation and cu-cu bonding with over 14% pde at 940nm[C]// 2020 IEEE International Electron Devices Meeting (IEDM).IEEE, 2020:16.6.1-16.6.4.
[11]
SHIMADA S, OTAKE Y, YOSHIDA S, et al. A back illuminated 6 μm spad pixel array with high pde and timing jitter performance[C]// 2021 IEEE International Electron Devices Meeting (IEDM).IEEE, 2021:20.1.1-20.1.4.
[12]
SHIMADA S, OTAKE Y, YOSHIDA S, et al. A SPAD Depth Sensor Robust Against Ambient Light:The Importance of Pixel Scaling and Demonstration of a 2.5μm Pixel with 21.8% PDE at 940nm[C]// 2022 International Electron Devices Meeting (IEDM).IEEE, 2022:37.3.1-37.3.4.
[13]
MORIMOTOK. Charge-focusing SPAD image sensors for low light imaging applications[C]// Int. SPAD Sensor workshop, 2020.
[14]
PRATTE J F, NOLET F, PARENT S, et al. 3D photon-to-digital converter for radiation instrumentation:Motivation and future works[J]. Sensors, 2021, 21(2):598.
[15]
YANG X, YAO C, KANG L, et al. A Bio-Inspired Spiking Vision Chip Based on SPAD Imaging and Direct Spike Computing for Versatile Edge Vision[J]. IEEE Journal of Solid-State Circuits, 2023.
[16]
BEER M, HAASE J F, RUSKOWSKI J, et al. Background light rejection in SPAD-based LiDAR sensors by adaptive photon coincidence detection[J]. Sensors, 2018, 18(12):4338.
[17]
NICLASS C, SOGA M, MATSUBARA H, et al. A 100-m Range 10-Frame/s 340×96-Pixel Time-of-Flight Depth Sensor in 0.18-μm CMOS[J]. IEEE Journal of Solid-State Circuits, 2012, 48(2):559-572.
[18]
MANUZZATO E, TONTINI A, SELJAK A, et al. A 64×64-Pixel Flash LiDAR SPAD Imager with Distributed Pixel-to-Pixel Correlation for Background Rejection,Tunable Automatic Pixel Sensitivity and First-Last Event Detection Strategies for Space Applications[C]// 2022 IEEE International Solid-State Circuits Conference (ISSCC).IEEE, 2022, 65:96-98.
[19]
VILLA F, SEVERINI F, MADONINI F, et al. SPADs and SiPMs arrays for long-range high-speed light detection and ranging (LiDAR)[J]. Sensors, 2021, 21(11):3839.
[20]
HAN S H, PARK S, CHUN J H, et al. 6.7 A 160×120 Flash LiDAR Sensor with Fully Analog-Assisted In-Pixel Histogramming TDC Based on Self-Referenced SAR ADC[C]// 2024 IEEE International Solid-State Circuits Conference (ISSCC).IEEE, 2024, 67:112-114.
[21]
刘旭熙. 面向单光子dToF图像传感器的TDC研究[D]. 北京: 中国科学院大学, 2023.
LIU X X. Research on TDC for single-photon dToF image sensor[D]. Beijing: University of Chinese Academy of Sciences, 2023. (in Chinese)
[22]
HU J, LIU B, MA R, et al. A 32×32-pixel flash LiDAR sensor with noise filtering for high-background noise applications[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2021, 69(2):645-656.
[23]
HUTCHINGS S W, JOHNSTON N, GYONGY I, et al. A reconfigurable 3-D-stacked SPAD imager with in-pixel histogramming for flash LIDAR or high-speed time-of-flight imaging[J]. IEEE Journal of Solid-State Circuits, 2019, 54(11):2947-2956.
[24]
PARK S, KIM B, HAN S H, et al. An 80×60 Flash LiDAR Sensor With In-Pixel Delta-Intensity Quaternary Search Histogramming TDC[J]. IEEE Journal of Solid-State Circuits, 2022, 57(11):3200-3211.
[25]
SESTA V, SEVERINI F, VILLA F, et al. Spot tracking and TDC sharing in SPAD arrays for TOF LiDAR[J]. Sensors, 2021, 21(9):2936.
[26]
RUOKAMO H, HALLMAN L W, KOSTAMOVAARA J. An 80×25 Pixel CMOS Single-Photon Sensor With Flexible On-Chip Time Gating of 40 Subarrays for Solid-State 3-D Range Imaging[J]. IEEE Journal of Solid-State Circuits, 2018, 54(2):501-510.
[27]
DUTTON N A W, GYONGY I, PARMESAN L, et al. A SPAD-based QVGA image sensor for single-photon counting and quanta imaging[J]. IEEE Transactions on Electron Devices, 2015, 63(1):189-196.
[28]
ROCHAS A, GOSCH M, SEROV A, et al. First fully integrated 2-D array of single-photon detectors in standard CMOS technology[J]. IEEE Photonics technology letters, 2003, 15(7):963-965.
[29]
NICLASS C, ROCHAS A, BESSE P A, et al. Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes[J]. IEEE Journal of Solid-State Circuits, 2005, 40(9):1847-1854.
[30]
MORIMOTO K, ARDELEAN A, WU M L, et al. Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications[J]. Optica, 2020, 7(4):346-354.
[31]
MORIMOTO K, IWATA J, SHINOHARA M, et al. 3.2 megapixel 3D-stacked charge focusing SPAD for low-light imaging and depth sensing[C]// 2021 IEEE International Electron Devices Meeting (IEDM).IEEE, 2021:20.2.1-20.2.4.
[32]
DUTTON N A W, AL ABBAS T, GYONGY I, et al. High dynamic range imaging at the quantum limit with single photon avalanche diode-based image sensors[J]. Sensors, 2018, 18(4):1166.
[33]
HENDERSON R K, JOHNSTON N, HUTCHINGS S W, et al. 5.7 A 256×256 40nm/90nm CMOS 3D-stacked 120dB dynamic-range reconfigurable time-resolved SPAD imager[C]// 2019 IEEE International Solid-State Circuits Conference (ISSCC).IEEE, 2019:106-108.
[34]
TAKATSUKA T, OGI J, IKEDA Y, et al. A 3.36μm-Pitch SPAD Photon-Counting Image Sensor Using a Clustered Multi-Cycle Clocked Recharging Technique With an Intermediate Most-Significant-Bit Readout[J]. IEEE Journal of Solid-State Circuits, 2024.
[35]
OGI J, TAKATSUKA T, HIZU K, et al. A 124-dB dynamic-range SPAD photon-counting image sensor using subframe sampling and extrapolating photon count[J]. IEEE Journal of Solid-State Circuits, 2021, 56(11):3220-3227.
[36]
OTA Y, MORIMOTO K, SASAGO T, et al. A 0.37 W 143dB-dynamic-range 1Mpixel backside-illuminated charge-focusing SPAD image sensor with pixel-wise exposure control and adaptive clocked recharging[C]// 2022 IEEE International Solid-State Circuits Conference (ISSCC).IEEE, 2022, 65:94-96.
[37]
QIAN X, JIANG W, DEEN M J. Single Photon Detectors for Automotive LiDAR Applications:State-of-the-Art and Research Challenges[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2023.
[38]
PIRON F, MORRISON D, YUCE M R, et al. A review of single-photon avalanche diode time-of-flight imaging sensor arrays[J]. IEEE Sensors Journal, 2020, 21(11):12654-12666.
[39]
ZHANG C, LINDNER S, ANTOLOVIĆI M, et al. A 30-frames/s,252×144 SPAD Flash LiDAR With 1728 Dual-Clock 48.8-ps TDCs,and Pixel-Wise Integrated Histogramming[J]. IEEE Journal of Solid-State Circuits, 2018, 54(4):1137-1151.
[40]
KIM M, SEO H, KIM S, et al. A 320x 240 CMOS LiDAR Sensor with 6-Transistor nMOS-Only SPAD Analog Front-End and Area-Efficient Priority Histogram Memory[C]// 2024 IEEE International Solid-State Circuits Conference (ISSCC).IEEE, 2024, 67:120-122.
[41]
KIM B, PARK S, CHUN J H, et al. 7.2 A 48×40 13.5mm depth resolution flash LiDAR sensor with in-pixel zoom histogramming time-to-digital converter[C]// 2021 IEEE International Solid-State Circuits Conference (ISSCC).IEEE, 2021, 64:108-110.
[42]
KUMAGAI O, OHMACHI J, MATSUMURA M, et al. A 189×600 back-illuminated stacked SPAD direct time-of-flight depth sensor for automotive LiDAR systems[C]// 2021 IEEE International Solid-State Circuits Conference (ISSCC).IEEE, 2021, 64:110-112.
[43]
POLAND S P, KRSTAJIĆN, MONYPENNY J, et al. A high speed multifocal multiphoton fluorescence lifetime imaging microscope for live-cell FRET imaging[J]. Biomedical optics express, 2017, 6(2):277-296.
[44]
XIONG-BO L, DAN-YING L, QIAN-QIAN W, et al. Recent progress of fluorescence lifetime imaging microscopy technology and its application[J]. Acta Physica Sinica, 2018, 67(17).
[45]
GYONGY I, CALDER N, DAVIES A, et al. A 256×256,100-kfps,61% Fill-Factor SPAD Image Sensor for Time-Resolved Microscopy Applications[J]. IEEE Transactions on Electron Devices, 2017, 65(2):547-554.
[46]
ULKU A C, BRUSCHINI C, ANTOLOVIĆI M, et al. A 512×512 SPAD image sensor with integrated gating for widefield FLIM[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 25(1):1-12.
[47]
WAYNE M, ULKU A, ARDELEAN A, et al. A 500×500 dual-gate SPAD imager with 100% temporal aperture and 1 ns minimum gate length for FLIM and phasor imaging applications[J]. IEEE Transactions on Electron Devices, 2022, 69(6):2865-2872.

基金

科技创新2030重大项目(2021ZD0109801)
北京市科技计划(Z221100007722028)

编辑: 薛士然
PDF(44372 KB)

Accesses

Citation

Detail

段落导航
相关文章

/