基于单个宽频CMOS探测器的太赫兹焦平面扫描成像系统

林越, 张辉, 祁峰, 刘朝阳

集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (5) : 35-41.

PDF(7824 KB)
PDF(7824 KB)
集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (5) : 35-41. DOI: 10.20193/j.ices2097-4191.2024.05.004
CMOS图像传感器研究专栏

基于单个宽频CMOS探测器的太赫兹焦平面扫描成像系统

作者信息 +

Focal plane scanning imaging system based on single broadband CMOS terahertz detector

Author information +
文章历史 +

摘要

太赫兹波是介于毫米波与红外光之间的电磁波,具有强穿透性、非电离性、高瞬时带宽等特点,在安全检查、无损检测、医疗成像等领域有着广阔的应用前景。在成像系统中,探测器是至关重要的部分。本文提出了一种将不同中心频率的窄带探测器输出结合实现宽频带探测的结构,为了减少面积,这些窄带探测器采用嵌套式结构,即高频窄带探测器被依次放置在低频窄带探测器的内部,每一个窄带探测器均包括环形天线、匹配网络和场效应晶体管检波电路。该探测器由65 nm标准CMOS工艺制成,探测频率范围覆盖了100~1 000 GHz。基于该宽频探测器搭建实现了太赫兹焦平面成像系统,该系统主要包括太赫兹辐射源、聚四氟乙烯(PTFE)透镜、宽频CMOS探测器等。实验结果表明,该成像系统在100 GHz、220 GHz和300 GHz频率下能够稳定成像,并且随着频率的提高,成像质量也明显提升。通过对得到的成像结果使用形态学闭运算进行优化,解决了成像中信息缺失的问题,有效地改善了成像质量。

Abstract

Terahertz wave is an electromagnetic wave between millimeter wave and infrared light,which has many feature like strong penetration capability,non-ionization and high instantaneous bandwidth.For these qualities,terahertz waves have a wide range of potential applications in non-destructive testing,medical imaging,safety inspection,and other areas.In the imaging system,the detector is an essential part.This paper presents a structure that combines the output of narrow-band detectors with different center frequencies to realize wide-band detection.In order to reduce the area,these narrowband detectors adopt a nested structure,which means that the high-frequency narrowband detectors are placed inside the low-frequency narrowband detectors in turn.Each narrow-band detector includes a loop antenna,a matching network and a field effect transistor (FET) detector circuit.The detector is fabricated in a 65 nm standard CMOS process,and the detection frequency range covers 100 GHz to 1 000 GHz.Based on this broadband detector,we propose a terahertz focal plane imaging system,which mainly consists of a terahertz radiation source,a PTFE lens,a broadband CMOS detector,etc.The measurement results have shown that the focal plane imaging system is capable of stably imaging at frequencies of 100 GHz,220 GHz and 300 GHz.The imaging quality improves significantly with increasing frequency.In order to solve the problem of missing information in measurement images,the morphological closing algorithm is used to process the original image.This algorithm effectively fills in the missing information and enhances the quality of the image.

关键词

太赫兹成像 / 宽带CMOS探测器 / 焦平面成像 / 闭运算 / 窄带探测器

Key words

terahertz imaging / broadband CMOS detector / focal plane imaging / closing algorithm / narrowband detector

引用本文

导出引用
林越, 张辉, 祁峰, . 基于单个宽频CMOS探测器的太赫兹焦平面扫描成像系统[J]. 集成电路与嵌入式系统. 2024, 24(5): 35-41 https://doi.org/10.20193/j.ices2097-4191.2024.05.004
LIN Yue, ZHANG Hui, QI Feng, et al. Focal plane scanning imaging system based on single broadband CMOS terahertz detector[J]. Integrated Circuits and Embedded Systems. 2024, 24(5): 35-41 https://doi.org/10.20193/j.ices2097-4191.2024.05.004
中图分类号: TN42 (微模组件)   

参考文献

[1]
ZHOU Q, HUANG Z. Review of Research and Application of Terahertz Imaging Technology[J]. Infrared Technology, 2022, 44(4):328-342.
[2]
D M MITTLEMAN. Twenty years of terahertz imaging[J]. Opt. Express, 2018, 26(8):9417.
[3]
曹丙花, 李素珍, 蔡恩泽, 等. 太赫兹成像技术的进展[J]. 光谱学与光谱分析, 2020, 40(9):2686-2695.
CAO B H, LI S ZH, CAI EN Z, et al. Progress in terahertz imaging technology[J]. Spectroscopy and Spectral Analysis, 2020, 40(9):2686-2695. (in Chinese)
[4]
HU X. Research on long-distance,wide field-of-view and large depth-of-field terahertz imaging based on aspheric lens[J]. Optics and Lasers in Engineering, 2023(161):107-381.
[5]
R J FALCONER, A G MARKELZ. Terahertz Spectroscopic Analysis of Peptides and Proteins[J]. Journal of Infrared,Millimeter,and Terahertz Waves, 2012, 33(10):973-988.
[6]
M HAASER. Application of terahertz pulsed imaging to analyse film coating characteristics of sustained-release coated pellets[J]. International Journal of Pharmaceutics, 2013, 57(2):521-526.
[7]
M TONOUCHI. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2):97-105.
[8]
E GROSSMAN. Passive terahertz camera for standoff security screening[J]. Applied Optics, 2010, 49(19):E106.
[9]
LIU H B, ZHONG H, N KARPOWICZ, et al. Terahertz Spectroscopy and Imaging for Defense and Security Applications[J]. Proc. IEEE, 2007, 95(8):1514-1527.
[10]
YE H. Application of terahertz technology in medical science and research progress[J]. Opto-Electronic Engineering, 2018, 45(5):170-528.
[11]
WANG H. Recent progress in terahertz biosensors based on artificial electromagnetic subwavelength structure[J]. TrAC Trends in Analytical Chemistry, 2023(158):116-888.
[12]
HU B B, NUSS M C. Imaging with terahertz waves[J]. Optics Letters, 1995, 20(16):1716-1718.
[13]
WANG X, ZHANG Y. Advancement and application of terahertz pulsed focal-plane imaging technique[J]. Opto-Electronic Engineering, 2020, 47(5):190-412.
[14]
S REGENSBURGER. Broadband terahertz detection with Zero-Bias field-effect transistors between 100 GHz and 11.8 THz with a noise equivalent power of 250 $\mathrm{pW} / \sqrt{\mathrm{Hz}}$ at 0.6 THz[J]. IEEE Trans. Terahertz Sci. Technol, 2018, 8(4):465-471.
[15]
罗木昌, 孙建东, 张志鹏, 等. 基于AlGaN/GaN场效应晶体管的太赫兹焦平面成像传感器[J]. 红外与激光工程, 2018, 47(3): 243-248.
LUO M CH, SUN J D, ZHANG ZH P, et al. Terahertz focal plane imaging sensor based on AlGaN/GaN field-effect transistor[J]. Infrared and Laser Engineering, 2018, 47(3):243-248. (in Chinese)
[16]
ZHU Y. 0.2-4.0 THz broadband terahertz detector based on antenna-coupled AlGaN/GaN HEMTs arrayed in a bow-tie pattern[J]. Opt. Express, 2023(31):10720-10731.
[17]
KNAP W, TEPPE F, MEZIANI Y, et al. Plasma wave detection of sub-terahertz and terahertz radiation by silicon field-effect transistors[J]. Appl Phys Lett, 2004(85):675-677.
[18]
R AL HADI. A 1 k-Pixel Video Camera for 0.7-1.1 Terahertz Imaging Applications in 65 nm CMOS[J]. IEEE Journal Solid-State Circuits, 2012, 47(12):2999-3012.
[19]
K IKAMAS. Broadband terahertz power detectors based on 90-nm silicon CMOS transistors with flat responsivity up to 2.2 THz[J]. IEEE Electron Device Lett, 2018, 39(9):1413-1416.
[20]
T FANG. A 25 fps 32×24 Digital CMOS Terahertz Image Sensor[C]// IEEE Asian Solid-State Circuits Conference, 2018:87-90.
[21]
LIU M. A 16.4k pixel 3.08-3.86THz Digital Real-Time CMOS Image Sensor with 73dB Dynamic Range[C]// IEEE International Solid-State Circuits Conference (ISSCC), 2023:4-6.
[22]
F SCHUSTER. A broadband THz imager in a low-cost CMOS technology[C]// ISSCC Dig. Tech. Papers, 2011:42-43.
[23]
LIU Z. A 150-to-1050GHz Terahertz Detector in 65 nm CMOS[C]// IEEE Asian Solid-State Circuits Conference (A-SSCC),Busan,Korea, 2021:1-3.
[24]
LIN Y. Focal plane imagine system based on CMOS terahertz detector[C]// 2023 International Conference on Signal Processing and Intelligent Computing (SPIC 2023),2023.
[25]
LIU Z. A CMOS Fully Integrated 860-GHz Terahertz Sensor[J]. IEEE Trans. THz Science and Technology, 2017, 7(4):455-465.
[26]
D KIM. 820-GHz Imaging Array Using Diode-Connected NMOS Transistors in 130 nm CMOS[C]// 2013 IEEE Symposium on VLSI Circuits, 2013:C12-C13.
[27]
LI W. Refractive aspherical lens for terahertz imaging[J]. Optics Communications, 2019(433):14-17.
[28]
P SOILLE. Morphological image analysis: principles and applications[M]. Berlin: Springer-Verlag Berlin Heidelberg, 1999.

基金

雄安新区科技创新专项(2022XAGG0181)
国家自然科学基金项目(61804160)
国家自然科学基金项目(61801467)
辽宁省自然科学基金项目(2022-MS-034)

编辑: 薛士然
PDF(7824 KB)

Accesses

Citation

Detail

段落导航
相关文章

/